14.127 Behavioral Economics. Lecture 11

Fairness

Xavier Gabaix

April 22, 2004

1 Fairness

- Fehr and Schmidt, QJE 99

1.1 Stylized facts

- Ultimatum game
- proposer gets $\$ 1$ and propose a share s to the respondent
- respondent accepts (payoffs $(1-s, s)$) or rejects (payoffs $(0,0)$)
- typical strategy $s=.3$
- Market game with multiple proposers
- 1 responder and $n-1$ proposers
- R accepts the highest offer
- empirically $s=1$
- Market game with multiple responders
$-n-1$ responders and 1 proposer
- if at least one responder accepts, the contract is executed (responder share is divided between all responders that accepted)
- empirically $s=0$

1.2 Model

- Utility of a player i from allocation $\left(x_{1}, \ldots, x_{n}\right)$ to all n players is

$$
U_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}-\frac{\alpha_{i}}{n-1} \sum\left(x_{j}-x_{i}\right)^{+}-\frac{\beta_{i}}{n-1} \sum\left(x_{i}-x_{j}\right)^{+}
$$

where α_{i}, β_{i} are parameters, $0 \leq \beta_{i} \leq \alpha_{i}, \beta_{i}<1$, and $y^{+}=\max (y, 0)$.

- The assumption $\beta_{i}<1$ means that player i always prefers having more rather than less (keeping allocations of others unchanged).
- Marginal effects

$$
\frac{\partial U_{i}}{\partial x_{j}}=-\frac{\alpha_{i}}{n-1} 1_{x_{j}-x_{i}>0}+\frac{\beta_{i}}{n-1} 1_{x_{i}-x_{j}>0}
$$

for $x_{j} \neq x_{i}$.

- Thus, U_{i} is increasing in x_{j} if $x_{j}<x_{i}$ and decreases in x_{j} if $x_{j}>x_{i}$.

1.3 Application: Ultimatum Game

- 2 players, proposer (1) and responder (2), an offer s leads to $x_{1}=1-s$ and $x_{2}=s$.
- $U_{2}(s)=s-\alpha_{2}\left(x_{1}-x_{2}\right)^{+}-\beta_{2}\left(x_{2}-x_{1}\right)^{+}=s-\alpha_{2}(1-2 s)^{+}-$ $\beta_{2}(2 s-1)^{+}$
- Assume $s<\frac{1}{2}$. Then the responder accepts iff U_{2} is positive, i.e. $s \geq$ $s^{*}=\frac{\alpha_{2}}{1+2 \alpha_{2}}$
- If $s \geq \frac{1}{2}$ then the responder accepts as then

$$
U_{2}=s+\beta_{2}-2 \beta_{2} s>s^{2}+\beta_{2}^{2}-2 \beta_{2} s=\left(s-\beta_{2}\right)^{2} \geq 0
$$

- Assume $s>\frac{1}{2}$. Then the responder accepts iff U_{2} is positive, i.e. $s \geq$ $s^{*}=\frac{\alpha_{2}}{1+2 \alpha_{2}}$
- $U_{1}(s)=x_{1}-\alpha_{1}\left(x_{2}-x_{1}\right)^{+}-\beta_{1}\left(x_{1}-x_{2}\right)^{+}=1-s-\alpha_{1}(2 s-1)^{+}-$ $\beta_{1}(1-2 s)^{+}$
- Hence

$$
\frac{\partial U_{1}}{\partial s}=-1-2 \alpha_{1} 1_{2 s-1>0}-2 \beta_{1} 1_{1-2 s>0}= \begin{cases}-1+2 \beta_{1} & \text { if } s<\frac{1}{2} \\ -1-2 \alpha_{1} & \text { if } s>\frac{1}{2}\end{cases}
$$

for $s \neq \frac{1}{2}$.

- If $\beta_{1}<\frac{1}{2}$ then $s=s^{*}$
- If $\beta_{1}>\frac{1}{2}$ then $s=\frac{1}{2}$.
- If empirically $s^{*} \simeq \frac{1}{3}$, then $\alpha_{2} \simeq 1$.
- Proposition 1. In the market game with $n-1$ proposers, the equilibrium is $s^{*}=1$.
- Proposition 2. In the market game with $n-1$ receivers, it exists an equilibrium with $s^{*}=0$.

1.4 Cooperation and Retaliation

- (Public Good Games or Cooperation Games)

1.4.1 Game 1

- n players, player i contributes g_{i} to the public good out of the budget of \$1
- monetary payoffs

$$
x_{i}=1-g_{i}+a \sum_{j} g_{j}
$$

with $a \in\left(\frac{1}{n}, 1\right)$

- the rational Nash Equilibirum is $g_{i}=0$
- collective optimum $S=\sum_{j} x_{j}$

$$
\frac{\partial S}{\partial g_{i}}=\sum_{j} \frac{\partial x_{j}}{\partial g_{i}}=n a-1
$$

and collectively optimal $g_{i}=1$ if $\alpha>\frac{1}{n}$.

- In experiments, people play $g_{i}=0$.

1.4.2 Game 2

- Same as Game 1 with everything public knowledge, except that player i can punish player j by an amount $p_{i j}$ with cost $c p_{i j}$ with $c \in(0,1)$
- Proposition. In Game 1, if $\alpha_{i}+\beta_{i}<1$ then $g_{i}=0$. Moreover, if there are enough players with $\alpha_{i}+\beta_{i}<1$, then everyone plays $g_{i}=0$.
- Proposition. In Game 2, if there are enough people with $\alpha_{i}+\beta_{i}>1$ then there exists an equilibrium with $g_{i}=g>0$.

1.5 Cross society comaprison

- Camerer, Fehr et all, AER Papers and Proceedings, 2001 - a study of 16 societies
- societies with lots of cooperation offer 50-50 to each other
- in societies when the state is broken down personal reputation is important (so e.g. you don't accept splits below 50% or hit back if attacks)

1.6 Applications to labor market

- Short run wage rigidity caused by people who think cutting their wage is unfair and would become disgruntled if their wage was cut.

