14.127 Behavioral Economics. Lecture 11 Fairness

Xavier Gabaix

April 22, 2004

1 Fairness

• Fehr and Schmidt, QJE 99

1.1 Stylized facts

- Ultimatum game
 - proposer gets \$1 and propose a share s to the respondent
 - respondent accepts (payoffs (1-s,s)) or rejects (payoffs (0,0))
 - typical strategy s = .3

- Market game with multiple proposers
 - 1 responder and n-1 proposers
 - R accepts the highest offer
 - empirically s=1
- Market game with multiple responders
 - n-1 responders and 1 proposer
 - if at least one responder accepts, the contract is executed (responder share is divided between all responders that accepted)
 - empirically s=0

1.2 Model

• Utility of a player i from allocation $(x_1,...,x_n)$ to all n players is

$$U_i(x_1, ..., x_n) = x_i - \frac{\alpha_i}{n-1} \sum_{i=1}^{n} (x_j - x_i)^{+} - \frac{\beta_i}{n-1} \sum_{i=1}^{n} (x_i - x_j)^{+}$$

where α_i, β_i are parameters, $0 \leq \beta_i \leq \alpha_i, \beta_i < 1$, and $y^+ = \max(y, 0)$.

- The assumption $\beta_i < 1$ means that player i always prefers having more rather than less (keeping allocations of others unchanged).
- Marginal effects

$$\frac{\partial U_i}{\partial x_j} = -\frac{\alpha_i}{n-1} \mathbf{1}_{x_j - x_i > 0} + \frac{\beta_i}{n-1} \mathbf{1}_{x_i - x_j > 0}$$

for $x_i \neq x_i$.

ullet Thus, U_i is increasing in x_j if $x_j < x_i$ and decreases in x_j if $x_j > x_i$.

1.3 Application: Ultimatum Game

• 2 players, proposer (1) and responder (2), an offer s leads to $x_1 = 1 - s$ and $x_2 = s$.

•
$$U_2(s) = s - \alpha_2 (x_1 - x_2)^+ - \beta_2 (x_2 - x_1)^+ = s - \alpha_2 (1 - 2s)^+ - \beta_2 (2s - 1)^+$$

- Assume $s<\frac{1}{2}$. Then the responder accepts iff U_2 is positive, i.e. $s\geq s^*=\frac{\alpha_2}{1+2\alpha_2}$
- If $s \ge \frac{1}{2}$ then the responder accepts as then

$$U_2 = s + \beta_2 - 2\beta_2 s > s^2 + \beta_2^2 - 2\beta_2 s = (s - \beta_2)^2 \ge 0$$

• Assume $s>\frac{1}{2}$. Then the responder accepts iff U_2 is positive, i.e. $s\geq s^*=\frac{\alpha_2}{1+2\alpha_2}$

•
$$U_1(s) = x_1 - \alpha_1 (x_2 - x_1)^+ - \beta_1 (x_1 - x_2)^+ = 1 - s - \alpha_1 (2s - 1)^+ - \beta_1 (1 - 2s)^+$$

Hence

$$\frac{\partial U_1}{\partial s} = -1 - 2\alpha_1 \mathbf{1}_{2s-1>0} - 2\beta_1 \mathbf{1}_{1-2s>0} = \begin{cases} -1 + 2\beta_1 & \text{if } s < \frac{1}{2} \\ -1 - 2\alpha_1 & \text{if } s > \frac{1}{2} \end{cases}$$
 for $s \neq \frac{1}{2}$.

• If $\beta_1 < \frac{1}{2}$ then $s = s^*$

- If $\beta_1 > \frac{1}{2}$ then $s = \frac{1}{2}$.
- If empirically $s^* \simeq \frac{1}{3}$, then $\alpha_2 \simeq 1$.
- Proposition 1. In the market game with n-1 proposers, the equilibrium is $s^*=1$.
- ullet Proposition 2. In the market game with n-1 receivers, it exists an equilibrium with $s^*=0$.

1.4 Cooperation and Retaliation

• (Public Good Games or Cooperation Games)

1.4.1 Game 1

- ullet n players, player i contributes g_i to the public good out of the budget of \$1
- monetary payoffs

$$x_i = 1 - g_i + a \sum_j g_j$$

with $a \in (\frac{1}{n}, 1)$

ullet the rational Nash Equilibirum is $g_i=0$

$$\bullet$$
 collective optimum $S = \sum\limits_j x_j$

$$\frac{\partial S}{\partial g_i} = \sum_{j} \frac{\partial x_j}{\partial g_i} = na - 1$$

and collectively optimal $g_i = 1$ if $\alpha > \frac{1}{n}$.

• In experiments, people play $g_i = 0$.

1.4.2 Game 2

- Same as Game 1 with everything public knowledge, except that player i can punish player j by an amount p_{ij} with cost cp_{ij} with $c \in (0,1)$
- Proposition. In Game 1, if $\alpha_i + \beta_i < 1$ then $g_i = 0$. Moreover, if there are enough players with $\alpha_i + \beta_i < 1$, then everyone plays $g_i = 0$.
- Proposition. In Game 2, if there are enough people with $\alpha_i + \beta_i > 1$ then there exists an equilibrium with $g_i = g > 0$.

1.5 Cross society comaprison

- Camerer, Fehr et all, AER Papers and Proceedings, 2001 a study of 16 societies
- societies with lots of cooperation offer 50-50 to each other
- in societies when the state is broken down personal reputation is important (so e.g. you don't accept splits below 50% or hit back if attacks)

1.6 Applications to labor market

• Short run wage rigidity caused by people who think cutting their wage is unfair and would become disgruntled if their wage was cut.