1 DG monopoly with Fixed Types

Buyer-Seller: R-N, $\delta \leq 1$; 2 periods.

Buyer: v_i per period, $0 < v_L < v_H$,

 x_{it} is prob buyer *i* consumes in period *t*.

Seller: c = 0, $Pr(v_H) = \beta$.

• Full-Commitment:

Menu $(X_i, T_i)_{i=L,H}$, where $X_i = x_{i1} + \delta x_{i2}$.

Seller: $(1 - \beta)T_L + \beta T_H \rightarrow X_{i,T_i} \max$, s.t. $\begin{cases} v_i X_i - T_i \ge 0, & i = L, H \\ v_i X_i - T_i \ge v_i X_j - T_j, & i, j = L, H \\ 0 \le x_{it} \le 1, & i = L, H; t = 0, 1. \end{cases}$ IRL, ICH are binding:

 $(1-\beta)v_L X_L + \beta(v_H X_H - (v_H - v_L)X_L) \rightarrow_{X_L, X_H} \max.$ Thus, $X_H = 1 + \delta \equiv \Delta$. Set $\beta^* \equiv \frac{v_L}{v_H}$.

If
$$\beta < \beta^*$$
, $X_L = \Delta$, $T_L = T_H = v_L \Delta$ $(P = v_L)$.

Otherwise, $X_L = \mathbf{0} = T_L$, $T_H = v_H \Delta$.

• Selling DG: No-Commitment. $(\beta > \beta^*)$

 P_t is price in period t.

If object is sold in period t, it is consumed in each period thereafter.

Let $\beta_t = \Pr(i = H|t)$, $\beta_1 = \beta$, $\beta_2 = \beta_2(I_1)$, where I_1 is the outcome (information set) of period 1.

Period 2 (as before) depends on $\beta_2 \ge \beta^*$.

Period 1: L gets zero surplus, accepts $P_1 \leq v_L \Delta$.

Type *H* decision depends on Exp of t = 2:

 $P_2 = v_H \rightarrow H$ accepts $P_1 \leq v_H \Delta$.

 $P_2 = v_L \rightarrow H$ accepts $P_1 \leq v_H + \delta v_L \equiv P^*$.

Seller's options: (1) $P_1 = ER = v_L \Delta$.

(2) $P_2 = v_L$, $P_1 = P^*$,

 $ER = (1 - \beta)\delta v_L + \beta P^* = \beta v_H + \delta v_L \ (> ER^{(1)}).$

(3) (mixed str) Seller rnds over P_2 , $\sigma = \Pr(P_2 = v_H)$; buyer H rnds over buying in t = 1 (γ is prob). Seller indiff: $v_L = \beta_2 v_H$, thus

$$\beta_2 = \beta^* = \frac{\beta(1-\gamma)}{\beta(1-\gamma) + (1-\beta)}; \quad \gamma = \frac{\beta - \beta^*}{\beta(1-\beta^*)}.$$

Buyer indiff:

$$v_H \Delta - P_1 = \delta (1 - \sigma) (v_H - v_L); \quad \sigma = 1 - \frac{v_H \Delta - P_1}{\delta (v_H - v_L)}$$

Seller's revenue:

$$\beta \gamma P_1 + \delta \left[\beta (1-\gamma)(\sigma v_H + (1-\sigma)v_L) + (1-\beta)(1-\sigma)v_L\right]$$

Substitute either P_1 or σ . Linear objective.

Solution: $P_1 = v_H \Delta$, $\sigma = 1$.

 $ER = \beta v_H (\gamma \Delta + (1 - \gamma) \delta).$

When $\beta \to \beta^*$, $\gamma \to 0$, $ER \to \delta \beta v_H$. No randomizing.

When $\beta \to 1$, $\gamma \to 1$, $ER \to \beta \Delta v_H$. Randomizing is preferred.

Note, by "randomizing" seller still sells only to a highvalued buyer, but, with no commitment, sometimes no sale happens in period 1.

• Renting without Commitment.

Buyer pays R_t to consume in period t.

This would help if types were not fixed: with *iid* types seller can optimize each period, while selling still suffers competition from future selves.

(+) Rachet effect: cannot commit not to raise the price in period 2.

Period 2: $R_2 = v_H (= v_L)$ if $\beta_2 > (<)\beta^*$.

Two β 's possible (reject/accept!). Here, they are the same.

Period 1: (1) $R_1 = v_L$, $R_2 = v_H$, $ER = v_L + \delta \beta v_H$.

(2) Separating regime: $v_H - R_1 \ge \delta(v_H - v_L)$. $ER = \beta(v_H - \delta(v_H - v_L)) + \delta(\beta v_H + (1 - \beta)v_L) = \beta v_H + \delta v_L > ER^{(1)}$ (here, and from now on, β_t is probability of v_H conditional on rejection.)

(3) Semi-separating regime: H rents with prob $\gamma = \frac{\beta - \beta^*}{\beta(1-\beta^*)}$, seller is indifferent between setting R_2 to v_L or v_R after rejection.

Seller's probability of $R_2 = v_H$ is σ .

As before: $\sigma = 1$, $R_1 = v_H$. ER the same.

• More than two periods. β_t is prob of v_H conditional on rejected before.

Suppose there exists t < T, such that $\beta_t < \beta^*$, consider lowest possible t. Then, $R_\tau = v_L$ for all $\tau \ge t$.

Consider period t-1. Since $\beta_{t-1} \ge \beta^*$, there are high types that pay R_{t-1} and signal who they are.

To do so, $v_H - R_{t-1} \ge (v_H - v_L)\delta(1 + \delta + \cdots + \delta^{T-t}).$

If, however, $\delta(1+\delta) > 1$, $R_{t-1} < v_L$ (cannot happen). Then, $\beta_t \ge \beta^*$ for all t. Not much revelation possible.

Suppose β is close to β^* .

Selling: Separation is optimal with T = 2. If T = 3, the seller can set $P_1 = v_H + (\delta + \delta^2)v_L$, $P_2 = (1 + \delta)v_L$.

Renting when T = 3:

(1) Set $R_1 > v_L$, so that $\beta_2 = \beta^*$. Remaining payoff is $(1 + \delta)v_L$. In period 1, $R_1 \leq v_H$, and probability of sale is $< \beta$. Worse than selling.

(2) $R_1 = v_L$, and then two-periods full separation. Worse than selling again because, $\beta > \beta^*$.

• Renegotiation-proof contracts.

Sequential Pareto-Optimality.

T = 2, PO means $P_2 = v_H (= v_L)$ if $\beta_2 > (<)\beta^*$. Exactly the same requirement as with no-commitment.

Previous cases can be represented as renegotiation-proof contracts.