1 Dynamic Moral Hazard

- Intertemporal risk-sharing
- Better information (output, actions, consumption)
- Larger games (action spaces)
- Generic complexity (?spot contracting)

Simple M (separable): $t=1,2$.
$a \in A, \# Q=n, \operatorname{Pr}\left(q_{i}^{t}=q_{i} \mid a=a_{t}\right)=p_{i}\left(a_{t}\right)>0$.
Agent: $u(c)-\psi(a)$ (in each t), $\lim _{c \downarrow \bar{c}} u(c)=-\infty$.
Principal: $V(q-w)$.
Contracting: $t=1: \quad\left\{a_{1}, w_{1}\left(q_{i}^{1}\right), a_{2}\left(q_{i}^{2}\right), w_{2}\left(q_{i}^{1}, q_{j}^{2}\right)\right\}$. (RP)

- No savings or borrowing

Principal chooses: $w_{i}, w_{i j}$; Agent: α, a_{i}.
$\max _{w_{i}, w_{i j}} \sum_{i} p_{i}(\alpha)\left[V\left(q_{i}^{1}-w_{i}\right)+\sum_{j} p_{j}\left(a_{i}\right) V\left(q_{i}^{2}-w_{i j}\right)\right]$,
s.t. $\alpha, a_{i} \in \arg \max A G\left(\alpha, a_{i}, w_{i}, w_{i j}\right)$, and IR.

Euler equation:

$$
\frac{V^{\prime}\left(q_{i}^{1}-w_{i}\right)}{u^{\prime}\left(w_{i}\right)}=\sum_{j} p_{j}\left(a_{i}\right)\left[\frac{V^{\prime}\left(q_{i}^{2}-w_{i j}\right)}{u^{\prime}\left(w_{i j}\right)}\right]
$$

When $V^{\prime}=$ const, we have "smoothing"

$$
\frac{1}{u^{\prime}\left(w_{i}\right)}=\sum_{j} p_{j}\left(a_{i}\right)\left[\frac{1}{u^{\prime}\left(w_{i j}\right)}\right]
$$

Two observations: (1) Optimal contract has memory,

No memory would imply RHS is constant for all i, perfect insurance in period 1, wrong incentives.
(2) Agent wants to save (and so the contract is "frontloaded").
$\frac{\partial E U}{\partial s}=\sum_{j} p_{j}\left(a_{i}\right) u^{\prime}\left(w_{i j}\right)-u^{\prime}\left(w_{i}\right) \geq 0$ (Jensen's inequality).

- Monitored savings

Add t_{i}, s_{i} (principal, agent)'s savings.

The above contract can be achieved without historydependent wages, and, so, is spot-implementable.

Set: $c_{i j}=w_{i j}=w_{j}+s_{i}, w_{i}=c_{i}-s_{i}$.

Problem separates to: incentive provision and consumption smoothing.

- Free savings.

Example: Effort in $t=2$, consumption in both periods (borrowing in the first period)
$a \in\{H, L\}, \psi(H)=1, \psi(L)=0$.
$q \in\{0,1\}, p_{H}=p_{1}(H)>p_{L}>0$.
Suppose $a^{*}=H$. Contract $\left(w_{0}, w_{1}\right)$.
Let c^{j} be consumption with planned $j=H, L$.
$c^{j} \in \arg \max _{c} u(c)+p_{j} u\left(w_{1}-c\right)+\left(1-p_{j}\right) u\left(w_{0}-c\right)$.
We have

$$
\begin{aligned}
& u\left(c^{H}\right)+p_{H} u\left(w_{1}-c^{H}\right)+\left(1-p_{H}\right) u\left(w_{0}-c^{H}\right)-1= \\
& =u\left(c^{L}\right)+p_{L} u\left(w_{1}-c^{L}\right)+\left(1-p_{L}\right) u\left(w_{0}-c^{L}\right) \\
& >u\left(c^{H}\right)+p_{L} u\left(w_{1}-c^{H}\right)+\left(1-p_{L}\right) u\left(w_{0}-c^{H}\right)
\end{aligned}
$$

Thus $I C H 2$ is slack. Room for renegotiation (unless CARA)

1.1 T-period Problem

Subcases:

- Repeated Output (better statistical inference)
- Repeated Actions (multitask in time)
- Repeated Consumption (consumption smoothing)
- Repeated Actions and Output (consumption at the end)
- Infinitely repeated Actions, Output, and Consumption.

