1 Moral Hazard: Multiple Agents

- Multiple agents (firm?)
- Partnership: Q jointly affected
- Individual q_{i} 's. (tournaments)
- Common shocks, cooperations, collusion, monitoring.

Agents: $i=1, \ldots, n$.
$U_{i}\left(w_{i}, a_{i}\right)=u_{i}\left(w_{i}\right)-\psi_{i}\left(a_{i}\right)$

Efforts: $a=\left(a_{1}, \ldots, a_{n}\right)$, with $a_{i} \in[0, \infty)$
Output $q=\left(q_{1}, \ldots, q_{n}\right) \sim F(q \mid a)$.

Principal: R-N.

1.1 Moral Hazard in a Team

Holmstrom(82) Deterministic Q.
Output $Q(a) \sim F(q \mid a), \frac{\partial Q}{\partial a_{i}}>0, \frac{\partial^{2} Q}{\partial a_{i}^{2}}<0$,
$d q_{i j}=\frac{\partial^{2} Q}{\partial a_{i} \partial a_{j}} \geq 0,(d q)_{i j}$-negative definite.
Agents: $u_{i}(w)=w$.
Partnership $w(Q)=\left\{w_{1}(Q), \ldots, w_{n}(Q)\right\}$,
such that for all $Q, \sum_{i=1}^{n} w_{i}(Q)=Q$.
Problem: free-riding (someone else works hard, I gain)
First-best: $\frac{\partial Q\left(a^{*}\right)}{\partial a_{i}}=\psi^{\prime}\left(a_{i}^{*}\right)$.

Agents' choices: FOC:

$$
\frac{d w_{i}\left[Q\left(a_{i}, a_{-i}^{*}\right)\right]}{d Q} \frac{\partial Q\left(a_{i}, a_{-i}^{*}\right)}{\partial a_{i}}=\psi^{\prime}\left(a_{i}\right)
$$

? $\operatorname{Nash}\left(a_{i}^{*}\right)=\mathrm{FB}\left(a_{i}^{*}\right)$?

Locally:
$\frac{d w_{i}\left[Q\left(a_{i}, a_{-i}^{*}\right)\right]}{d Q}=1$, thus $w_{i}(Q)=Q+C_{i}$.
Budget $\sum_{i=1}^{n} w_{i}(Q)=Q$ for all (!) Q.
This requires a third party: budget breaker

Let $z_{i}=-C_{i}$-payment from agent i.

Thus $\sum_{i=1}^{n} z_{i}+Q\left(a^{*}\right) \geq n Q\left(a^{*}\right)$
and $z_{i} \leq Q\left(a^{*}\right)-\psi_{i}\left(a_{i}^{*}\right)$.

At F-B: $Q\left(a^{*}\right)-\sum_{i=1}^{n} \psi_{i}\left(a_{i}^{*}\right)>0$.
Thus $\exists z=\left(z_{1}, \ldots, z_{n}\right)$.

Note, b-b looses from higher Q s.

Comments: b-b is a residual claimant (in fact each agent is a residual claimant in a certain interpretation (!)).

Not the same as Alchian \& Demsetz (equity for manager's incentives to monitor agents properly).
? Other ways to support first-best?

Mirrlees contract: reward (bonus) b_{i} if $Q=Q\left(a^{*}\right)$,
penalty k otherwise. (bonuses for certain targets)

As long as $b_{i}-\psi_{i}\left(a_{i}^{*}\right) \geq-k$, $\mathrm{F}-\mathrm{B}$ can be supported, moreover if b 's and k exist so that $Q\left(a^{*}\right) \geq \sum_{i=1}^{n} b_{i}$, no $b-b$ needed.

Interpretation: Debt financing by the firm.

Firm commits to repay debts of $D=Q\left(a^{*}\right)-\sum b_{i}$, and b_{i} to each i.

If cannot, creditors collect Q and each employer pays k. (Hm...)

Issues: (1) Multiple equilibria (like in all coordinationtype games, and in Mechanism-Design literature). No easy solution unless
(2) actions of others are observed by agents, and the principal can base his compensation on everyone's reports. Not a problem with Holmstrom though (Positive effort of one agent increases effort from others).
(3) Deterministic Q.

1.2 Special Examples of F-B (approx) via different schemes

Legros \& Matthews ('93), Legros \& Matsushima ('91).

- Deterministic Q, finite A 's, detectable deviations.

Say, $a_{i} \in\{0,1\}$. And $Q^{f b}=Q(1,1,1)$.

Let $Q_{i}=Q\left(a_{i}=0, a_{-i}=(1,1)\right)$.

Suppose $Q_{1} \neq Q_{2} \neq Q_{3}$.

Shirker identified and punished (at the benefit of the others).

Similarly, even if $Q_{1}=Q_{2} \neq Q_{3}$.

- Approx. efficiency, $n=2$.

Idea: use one agent to monitor the other (check with prob ε).
$a_{i} \in[0, \infty) Q=a_{1}+a_{2}, \psi_{i}\left(a_{i}\right)=a_{i}^{2} / 2$.

F-B: $a_{i}^{*}=1$.

L \& M propose: agent 1 chooses $a_{1}=1$ with $p r=1-\varepsilon$.

When $Q \geq 1$,

$$
\left\{\begin{array}{c}
w_{1}(Q)=(Q-1)^{2} / 2 \\
w_{2}=q-w_{1}(Q)
\end{array}\right.
$$

when $Q<1$,

$$
\left\{\begin{array}{l}
w_{1}(Q)=Q+k \\
w_{2}(Q)=0-k
\end{array}\right.
$$

Check: Agent 1. Set $a_{2}=1$,
$\max _{a}\left[\frac{((a+1)-1)^{2}}{2}-\frac{a^{2}}{2}\right]=0$.
Agent 2. $a_{2} \geq 1 \mapsto Q \geq 1$. Implies $a_{2}^{*}=1, U_{2}=$ $1-\varepsilon / 2$.
$a_{2}<1$ guarantees $Q<1$ with prob. ε.
Obtain $a_{2}^{*}=\frac{1}{2}$, and $U_{2}=\frac{5}{4}-\varepsilon k$.
For, $k \geq \frac{1}{2}+\frac{1}{4 \varepsilon}, a_{2}^{*}=1$ is optimal.

- Random output. Cremer \& McLean works. (conditions?)

1.3 Observable individual outputs

$$
\begin{aligned}
& q_{1}=a_{1}+\varepsilon_{1}+\alpha \varepsilon_{2} \\
& q_{2}=a_{2}+\varepsilon_{2}+\alpha \varepsilon_{1}
\end{aligned}
$$

$\varepsilon_{1}, \varepsilon_{2} \sim \operatorname{iid} N\left(0, \sigma^{2}\right)$.
CARA agents: $u(w, a)=-e^{-\mu(w-\psi(a))}, \psi(a)=\frac{1}{2} c a^{2}$.

Linear incentive schemes:

$$
\begin{aligned}
& w_{1}=z_{1}+v_{1} q_{1}+u_{1} q_{2} \\
& w_{2}=z_{2}+v_{2} q_{2}+u_{2} q_{1}
\end{aligned}
$$

No relative performance weights: $u_{i}=0$,

Principal: $\max _{a, z, v, u} E(q-w)$,
subject to $E\left[-e^{-\mu(w-\psi(a))}\right] \geq u(\bar{w})$.
Define $\hat{w}(a)$, as $-e^{-\mu \hat{w}(a)}=E\left[-e^{-\mu(w-\psi(a))}\right]$.

Agent's choice: $a \in \arg \max \hat{w}(a)$.
$E\left(e^{a \varepsilon}\right)=e^{a^{2} \sigma^{2} / 2}$, for $\varepsilon \sim N\left(0, \sigma^{2}\right)$.
(back to General case) Agent i
$V\left(w_{1}\right)=\operatorname{Var}\left(v_{1}\left(\varepsilon_{1}+\alpha \varepsilon_{2}\right)+u_{1}\left(\varepsilon_{2}+\alpha \varepsilon_{1}\right)\right)$

$$
=\sigma^{2}\left[\left(v_{1}+\alpha u_{1}\right)^{2}+\left(u_{1}+\alpha v_{1}\right)^{2}\right]
$$

Then, agent's problem:
$\max _{a}\left\{\begin{array}{c}z_{1}+v_{1} a+u_{1} a_{2}-\frac{1}{2} c a^{2}- \\ -\frac{\mu \sigma^{2}}{2}\left[\left(v_{1}+\alpha u_{1}\right)^{2}+\left(u_{1}+\alpha v_{1}\right)^{2}\right]\end{array}\right\}$.
Solution $a_{1}^{*}=\frac{v_{1}}{c}$ (as in one A case).
$\hat{w}_{1}=z_{1}+\frac{1}{2} \frac{v_{1}^{2}}{c}+\frac{u_{1} v_{2}}{c}-\frac{\mu \sigma^{2}}{2}\left[\left(v_{1}+\alpha u_{1}\right)^{2}+\left(u_{1}+\alpha v_{1}\right)^{2}\right]$.
Principal: $\max _{z_{1}, v_{1}, u_{1}}\left\{\frac{v_{1}}{c}-\left(z_{1}+\frac{v_{1}^{2}}{c}+\frac{u_{1} v_{2}}{c}\right)\right\}$
s.t. $\hat{w}_{1} \geq \bar{w}$

Principal:
$\max _{v_{1}, u_{1}}\left\{\frac{v_{1}}{c}-\frac{1}{2} \frac{v_{1}^{2}}{c} \frac{\mu \sigma^{2}}{2}-\left[\left(v_{1}+\alpha u_{1}\right)^{2}+\left(u_{1}+\alpha v_{1}\right)^{2}\right]\right\}$.
To solve: (1) find u_{1} to minimize sum of squares (risk)
(2) Find v_{1} (trade-off) risk-sharing, incentives

Obtain $u_{1}=-\frac{2 \alpha}{1+\alpha^{2}} v_{1}$.

The optimal incentive scheme reduce agents' exposure to common shock.
$v_{1}=\frac{1+\alpha^{2}}{1+\alpha^{2}+\mu c \sigma^{2}\left(1-\alpha^{2}\right)^{2}}$.

1.4 Tournaments

Lazear \& Rosen ('81)

Agents: R-N, no common shock.
$q_{i}=a_{i}+\varepsilon_{i} . \varepsilon \sim F(\cdot), E=0, \operatorname{Var}=\sigma^{2}$.

Cost $\psi\left(a_{i}\right)$.

F-B: $1=\psi^{\prime}\left(a^{*}\right)$.
$w_{i}=z+q_{i}$.
$z+E\left(q_{i}\right)-\psi\left(a^{*}\right)=z+a^{*}-\psi\left(a^{*}\right)=\bar{u}$.

Tournament: $q_{i}>q_{j} \rightarrow$ prize W, both agents paid z.

Agent: $z+p W-\psi\left(a_{i}\right) \rightarrow a_{i}$ max.
$p=\operatorname{Pr}\left(q_{i}>q_{j}\right)=$

$$
=\operatorname{Pr}\left(a_{i}-a_{j}>\varepsilon_{j}-\varepsilon_{i}\right)=H\left(a_{i}-a_{j}\right)
$$

$E_{H}=0, \operatorname{Var}_{H}=2 \sigma^{2}$.
FOC: $W \frac{\partial p}{\partial a_{i}}=\psi^{\prime}\left(a_{i}\right)$.
$W h\left(a_{i}-a_{j}\right)=\psi^{\prime}\left(a_{i}\right)$.
Symmetric Nash: $(+\mathrm{FB}): W=\frac{1}{h(0)}$.
$z+\frac{H(0)}{h(0)}-\psi\left(a^{*}\right)=\bar{u}$.
Result: Same as FB with wages.

Extension: multiple rounds, prizes progressively increasing.

Agents: Risk-averse + Common Shock.
Trade-off between (z, q) contracts and tournaments.

1.5 Cooperation and Competition

- Inducing help vs Specialization
- Collusion among agents
- Principal-auditor-agent

Itoh ('91)

2 agents: $q_{i} \in\{0,1\},\left(a_{i}, b_{i}\right) \in[0, \infty) \times[0, \infty)$.
$U_{i}=u_{i}(w)-\psi_{i}\left(a_{i}, b_{i}\right), u_{i}(w)=\sqrt{w}$.
$\psi_{i}\left(a_{i}, b_{i}\right)=a_{i}^{2}+b_{i}^{2}+2 k a_{i} b_{i}, k \in[0,1]$.
$\operatorname{Pr}\left(q_{i}=1\right)=a_{i}\left(1+b_{i}\right)$.
Contract: $w^{i}=\left(w_{j k}^{i}\right), w_{j k}^{i}$ - payment to i when $q_{i}=j$, $q_{-i}=k$.

No Help: $b_{i}=0$.
$w_{0}=0, a_{i}\left(1-w_{1}\right) \rightarrow w_{1} \max$,
s.t, $a_{i}=\frac{1}{2} \sqrt{w_{1}}$ (IC) and IR is met. ...

Getting Help: Agent i solves (given $a_{j}, b_{j}, w, w_{11}>$ $w_{10}, w_{01}>w_{00}=0$.)
$a\left(1+b_{j}\right) a_{j}(1+b) \sqrt{w_{11}}+\left(1-a\left(1+b_{j}\right)\right) a_{j}(1+b) \sqrt{w_{01}}+$ $a\left(1+b_{j}\right)\left(1-a_{j}(1+b)\right) \sqrt{w_{10}}-a^{2}-b^{2}-2 k a b \rightarrow \max _{a, b}$

FOC + symm: consider $\left(\frac{\partial}{\partial b}\right)$
$a^{2}(1+b)\left(\sqrt{w_{11}}-\sqrt{w_{10}}\right)+a(1-a(1+b)) \sqrt{w_{01}}=2(b+a k)$

If (as in No Help) $w_{11}=w_{10}, w_{01}=0$, and $k>0$, we have $R H S=0, L H S>0$ for any $b \geq 0$.

Therefore, need to change w significantly to get any b close to 0 . (Even to get $b=0$ with $F O C_{b}=0$)

By itself (ignoring change in a) and if b^{*} is small, and since change in w increases risk, it is costly for the principal to provide these incentives.

Even if a adjusts, since it is different from the first-best for the principal with $b=0$, the principal looses for sure.

Thus, if k is positive, there is a discontinuity at $b=0$, thus "a little" of help will not help: for all $b<b^{*}$ principal is worse-off.

For $k=0$, help is always better.

Two-step argument: 1. If $a^{h e l p} \geq a^{b=0}$, marginal cost of help is of second order, always good.
2. Show that $a^{\text {help }} \geq a^{b=0}$.

1.6 Cooperation and collusion.

CARA agents: $u(w, a)=-e^{-\mu_{i}\left(w_{i}-\psi_{i}(a)\right)}$.
$q_{i}=a_{i}+\varepsilon_{i},\left(\varepsilon_{1}, \varepsilon_{2}\right) \sim N(0, V)$, where $V=\left(\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right)$,
$\rho=\sigma_{12} /\left(\sigma_{1} \sigma_{2}\right)$.

Linear incentive schemes:

$$
\begin{aligned}
& w_{1}=z_{1}+v_{1} q_{1}+u_{1} q_{2} \\
& w_{2}=z_{2}+v_{2} q_{2}+u_{2} q_{1} .
\end{aligned}
$$

- No side contracts $\left(C E_{2}\left(a_{1}, a_{2}\right)\right.$ analogously):

$$
\begin{aligned}
C E_{1}\left(a_{1} a_{2}\right)= & z_{1}+v_{1} a_{1}+u_{1} a_{2}-\psi_{1}\left(a_{1}\right) \\
& -\frac{\mu_{1}}{2}\left(v_{1}^{2} \sigma_{1}^{2}+u_{1}^{2} \sigma_{2}^{2}+2 v_{1} u_{1} \sigma_{12}\right)
\end{aligned}
$$

Principal (RN):
$\left(1-v_{1}-u_{2}\right) a_{1}+\left(1-u_{1}-v_{2}\right) a_{2}-z_{1}-z_{2} \rightarrow \max$
s.t $\left(a_{1}^{*}, a_{2}^{*}\right)-\mathrm{NE}$ in efforts, and $C E_{i} \geq 0$.

Individual choices: $v_{i}=\psi_{i}^{\prime}\left(a_{i}\right)$.
u are set to minimize risk-exposure: $u_{i}=-v_{i} \frac{\sigma_{i}}{\sigma_{j}} \rho$.
Total risk exposure: $\sum_{i=1}^{2} \mu_{i}\left[v_{i}^{2} \sigma_{i}^{2}(1-\rho)\right]$.

- Full side-contracting:
- (?) Enough to consider contracts on $\left(a_{1}, a_{2}\right)$.
- Problem reduces to a single-agent problem with $\frac{1}{\mu}=$ $\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}$, with $\operatorname{costs} \psi\left(a_{1}, a_{2}\right)=\psi_{1}\left(a_{1}\right)+\psi_{2}\left(a_{2}\right)$.
- Full side contracting dominates no s-c iff $\rho \leq \rho^{*}$. (cooperation vs relative-performance evaluation).
- MD schemes.

1.7 Supervision and Collusion

Principal: $V>1$,

Agent: cost $c \in\{0,1\}, \operatorname{Pr}(c=0)=\frac{1}{2}$.
Monitor: cost $\left.z, \operatorname{Proof} y^{*}, \operatorname{Pr}\left(y^{*} \mid c=0\right)=p\right)$.

Assume: $V>2$ (so $P=1$ is optimal without monitor)

With monitor (no collusion)
$\frac{1}{2} p V+\left(1-\frac{1}{2} p\right)(V-1)-z$
Compare to $V-1$.

Collision: Agent-Monitor: $T_{\text {agent }} \rightarrow(k T)_{\text {monitor }}, k \leq$ 1.
$\max T=1$.

Principal: reward Monitor for y^{*} with $w \geq k$.
(Punish when there is not y^{*} ?)
Suppose not, that is $\frac{1}{2} p k>z$. (and thus suppose that $w_{\text {mon }}=0$)

Principal: $\frac{1}{2} p(V-k)+\left(1-\frac{1}{2} p\right)(V-1)$.

- No gain for allowing collusion
- If k is random, then possible.

