# Shrouded Attributes and the Curse of Education 

Xavier Gabaix, David Laibson

February, 2004

## 1 Shrouded attributes

- Consider a bank that sells two kinds of services.
- For price $p$ a consumer can open an account.
- If consumer violates minimum she pays fee $\widehat{p}$.
- WLOG assume that the true cost to the bank is zero.
- Consumer benefits $V$ from violating the minimum.
- Consumer alternatively may reduce expenditure to generate liquidity $V$.

$$
\begin{array}{cc}
\text { Cut back early spending } & V-e \\
\text { Violate minimum balance } & V-\widehat{p} \\
\text { Do neither } & 0
\end{array}
$$

### 1.1 Sophisticated consumer

- Sophisticates anticipate the fee $\widehat{p}$.
- They choose to spend less, with payoff $V-e$
- ...or to violate the minimum, with payoff $V-\widehat{p}$


### 1.2 Naive consumer

- Naive consumers do not fully anticipate the fee $\widehat{p}$.
- Naive consumers may completely overlook the aftermarket or they may mistakenly believe that $\widehat{p}<e$.
- Naive consumers will not spend at a reduced rate.
- Naive consumer must choose between foregoing payoff $V$ or paying fee $\widehat{p}$.

Summary of the model:

- Sophisticates will buy the add-on iff $V-\hat{p} \geq V-e$, or $e \leq \widehat{p}$.
- Naives will buy the add-on iff $V-\widehat{p} \geq 0$.
- $D_{i}$ is the probability that a consumer opens an account at bank $i$

$$
D_{1}=P\left(\sigma \varepsilon_{1}-p_{1}+q>\max _{i=2, \ldots, n} \sigma \varepsilon_{i}-p_{i}+q\right)
$$

- Assume that quality $q$ is constant across banks and look for symmetric equilibrium with $p_{1}=\ldots=p_{n}=p^{*}$.
- Then, the demand

$$
D_{1}=P\left(\sigma \varepsilon_{1}-p_{1}>\max _{i=2, \ldots, n} \sigma \varepsilon_{i}-p^{*}\right)=D\left(-p_{1}+p^{*}\right)
$$

where $D(x)=P\left(\sigma \varepsilon_{1}+x>\max _{i=2, \ldots, n} \sigma \varepsilon_{i}\right)$.

- If $\varepsilon$ is Gumbel then

$$
D(x)=\frac{e^{-x / \sigma}}{e^{-x / \sigma}+\sum_{i=2, \ldots, n} e^{-0 / \sigma}}=\frac{e^{-x / \sigma}}{e^{-x / \sigma}+n-1}
$$

### 1.3 Suppose there are only naives in the market.

- Assume $c=\widehat{c}=0$.
- In equilibrium other firms offer $p^{*}$ and $\widehat{p}^{*}$.
- We need $\widehat{p} \leq V$, otherwise no demand for add-on.
- Payoff of firm 1

$$
\pi_{1}=(p+\widehat{p}) D\left(-p+p^{*}\right)
$$

- Optimal $p$.
- At optimum

$$
0=\frac{\partial \pi}{\partial p}=D\left(-p+p^{*}\right)-(p+\widehat{p}) D^{\prime}\left(-p+p^{*}\right)
$$

- At symmetrical equilibrium $p=p^{*}$ and $\widehat{p}=\widehat{p}^{*}$ and

$$
0=D(0)-\left(p^{*}+\widehat{p}^{*}\right) D^{\prime}(0)
$$

- Hence, the profit per consumer is

$$
\mu \equiv p^{*}+\widehat{p}^{*}=\frac{D(0)}{D^{\prime}(0)}>0
$$

- Moreover, optimum $\widehat{p}^{*}=V$.
- Thus $p^{*}=\mu-\hat{p}^{*}$.
- Firms set high mark-ups in the add-on market.and the add-on mark-ups are inefficiently high: $\widehat{p}=V>e$.
- High mark-ups for the add-on are offset by low or negative mark-ups on the base good.
- To see this, assume market is competitive, so $\mu \simeq 0$.
- Loss leader base good: $p^{*} \approx-V<0$.
- In general with unit cost $c$ we have $p-c=\mu-V$ and $\mu=\frac{D(0)}{D^{\prime}(0)}=B_{n} \sigma$ where $B_{n}$ was defined last week.
- Total profits $p+\widehat{p}=\mu$ are small for high competition ( $\mu \sim 0$ ), and firms incur loss on the main item and high profits on add-ons.
- Examples: printers, hotels, banks, credit card teaser, mortgage teaser, cell phone, etc...
- The shrouded market becomes the profit-center because at least some consumers don't anticipate the shrouded add-on market and won't respond to a price cut in the shrouded market.


### 1.4 Suppose there are only sophisticated consumers

- Sophisticates will buy the add-on iff $\hat{p} \leq e$.
- Thus profit

$$
\pi_{1}=(p+\widehat{p}) D_{1} \text { if } \widehat{p} \leq e
$$

and

$$
\pi_{1}=p D_{1} \text { if } \widehat{p}>e
$$

- Perceived utility from good 1 is

$$
U_{1}=q-p+\max (V-\widehat{p}, V-e)+\sigma \varepsilon_{1}=q+V-p-\min (\widehat{p}, e)+\sigma \varepsilon_{1}
$$

- Perceived utility from good $i$ is

$$
U_{i}=q+V-p-\min (\widehat{p}, e)+\sigma \varepsilon_{i}
$$

- Demand for good 1 is

$$
\begin{aligned}
D_{1} & =P\left(U_{1}>\max _{i=2, \ldots, n} U_{i}\right) \\
& =P\left(q+V-p-\min \left(\widehat{p_{1}}, e\right)+\sigma \varepsilon_{1}>q+V-p^{*}-\min \left(\widehat{p}^{*}, e\right)+\sigma \max \varepsilon\right. \\
& =P\left(-p-\min \left(\widehat{p_{1}}, e\right)+p^{*}+\min \left(\widehat{p}^{*}, e\right)+\sigma \varepsilon_{1}>\sigma \max \varepsilon_{i}\right) \\
& =D\left(-p-\min \left(\widehat{p_{1}}, e\right)+p^{*}+\min \left(\widehat{p}^{*}, e\right)\right)
\end{aligned}
$$

- Conclusion. If there are only sophisticated consumers

$$
\begin{aligned}
\pi_{1} & =\left(p+\widehat{p} 1_{\widehat{p} \leq e}\right) D_{1} \\
& =\left(p+\widehat{p} 1_{\widehat{p} \leq e}\right) D\left(-p-\min \left(\widehat{p_{1}}, e\right)+p^{*}+\min \left(\widehat{p}^{*}, e\right)\right)
\end{aligned}
$$

where $1_{\widehat{p} \leq e}$ is indicator function equal 1 if $\hat{p} \leq e$ and equal 0 otherwise.

