14.13 Economics and Psychology (Lecture 19)

Xavier Gabaix

April 22, 2004

1 FAIRNESS

1.1 Ultimatum Game

- a Proposer (P) and a receiver (R) split \$10
- P proposes s
- R can accept or reject

- if R accepts, the payoffs are (P,R)=(10 - s, s)

- if R rejects, they are (0,0)

- Evidence from "In Search of Homo Economicus: Behavioral Experiments in 15 Small-Scale Societies", American Economic Review 91, (2001), 73-78, by Henrich, Fehr, Boyd, Bowles, Gintis, Camerer and McElreath: Table 1.
- Societies with lots of interactions
 - reputation is important (for example society with no or a very weak state)
 - incentives to never accept something below 50% (short term loss but long term gain)
- measure one dimension of fairness / equality

1.2 2 interesting variants

- 1. Market game with several proposers
 - n-1 proposers who propose simultaneously s_i
 - 1 responder who accepts or rejects the highest offer $s^{\max} = \max s_i$
 - \bullet empirically $s^{\max}=$ 10: incentive to offer more than the other proposers
- 2. Market game with several responders
 - 1 proposer
 - n-1 responders

- if all reject the offer, everybody gets 0
- if some accept, the offer is randomly assigned among the responders who accepted
- \bullet empirically $s=\varepsilon$ and it is accepted
- 3. It would be nice to have a model that explains all of these phenomena.

1.3 Fehr-Schmidt QJE'99

- n players
- final monetary payoffs $x_i \ i = 1...n$
- utility function

$$U_i(x_1, ..., x_n) = x_i - \frac{\alpha_i}{n-1} \sum_j (x_j - x_i)^+ - \frac{\beta_i}{n-1} \sum_j (x_i - x_j)^+$$

where $\alpha_i \geq \beta_i \geq 0$ and $1 > \beta_i$. Notation $y^+ = \max(y, 0)$

• utility of i as a function of the monetary payoff of $j x_j$

- if
$$x_j < x_i$$
, then $u_i = -\frac{\beta_i}{n-1}(x_i - x_j) + terms$ independent of x_j
- if $x_j > x_i$, then $u_i = -\frac{\alpha_i}{n-1}(x_j - x_i) + terms$ independent of x_j

- i cares about the payoffs j gets
- i dislikes that j gets more than him
- i dislikes that j gets less than him
- $\bullet\ i$ cares more about being behind than being ahead

1.4 Application to the Ultimatum Game

- player 1 is the proposer
- player 2 is the receiver
- they try to share \$1
- s = offer of the proposer

Receiver's strategy

- if he rejects, the payoffs are 0 and $U_2 = 0$
- if he accepts
 - the payoffs are $x_1 = 1 s$ and $x_2 = s$
 - his utility is

$$U_{2} = s - \alpha_{2}(1 - s - s)^{+} - \beta_{2}(s - 1 + s)^{+}$$
$$= \begin{cases} s - \alpha_{2}(1 - 2s) & \text{if } \frac{1}{2} \ge s \\ s - \beta_{2}(2s - 1) & \text{if } \frac{1}{2} \le s \end{cases}$$
$$= \begin{cases} (1 + \alpha_{2})s - \alpha_{2} & \text{if } \frac{1}{2} \ge s \\ (1 - 2\beta_{2})s + \beta_{2} & \text{if } \frac{1}{2} \le s \end{cases}$$

R accepts iff
$$s \in [s_2^*, 1]$$
, where $s_2^* = rac{lpha_2}{1+2lpha_2}$

- when $\alpha_2 = \beta_2 = 0$, $s_2^* = 0$ R accepts any offer
- when α_2 is high, $s_2^* \simeq 0.5$ fairness is really important (at least not being behind is), R accepts only if 50/50

Proposer's decision

- if $s < s_2^*$, R rejects then $U_1 = 0$
- if $s \ge s_2^*$, the payoffs are $x_1 = 1 s$ and $x_2 = s$

$$U_{1} = 1 - s - \alpha_{1}(s - 1 + s)^{+} - \beta_{1}(1 - s - s)^{+}$$
$$= \begin{cases} 1 - s - \alpha_{1}(2s - 1) & \text{if } \frac{1}{2} \leq s \\ 1 - s - \beta_{1}(1 - 2s) & \text{if } \frac{1}{2} \geq s \end{cases}$$
$$= \begin{cases} (1 + \alpha_{2})s - \alpha_{2} & \text{if } \frac{1}{2} \leq s \\ (1 - 2\beta_{2})s + \beta_{2} & \text{if } \frac{1}{2} \geq s \end{cases}$$

$$\begin{array}{ll} \beta_1 > .5 \quad s = .5 \\ \beta_1 < .5 \quad s = s_2^* = \frac{\alpha_2}{1 + 2\alpha_2} \\ \end{array} \quad \mbox{R accepts} \end{array}$$

Remark: Empirically $s^* \simeq 1/3$ this implies $\alpha_2 \simeq 1$ which means same weight on own wealth than on relative wealth with wealthier people.

Proposition 1: In the market game with n-1 proposers, the equilibrium is $s^* = 1$.

Proposition 2: In the market game with n-1 receivers, it exists an equilibrium with $s^* = 0$.

1.5 Cooperation and Retaliation

(Public Good Games or Cooperation Games)

- 1. Game 1: "Pure public good game"
 - n players
 - player i contributes g_i to the public good
 - monetary payoffs

$$x_i = 1 - g_i + a \sum_j g_j$$

with $a \in (rac{1}{n},1)$

- if people are not altruistic $\alpha_i = \beta_i = \mathbf{0}$
 - individual rationality

$$\frac{\partial x_i}{\partial g_i} = -1 + a < 0 \Longrightarrow g_i^* = 0 \Longrightarrow x_i^* = 1$$

- social optimal

$$S = \sum_{j} x_{j}$$
$$\frac{\partial S}{\partial g_{i}} = \sum_{j} \frac{\partial x_{j}}{\partial g_{i}} = na - 1 > 0 \Longrightarrow g_{i}^{c} = 1 \Longrightarrow x_{i}^{c} = na$$

- 2. Game 2: Public good game with punishment.
 - everything is public knowledge
 - player i can punish player j by an amount p_{ij} with cost $c.p_{ij}$ with $c \in (0,1)$
- 3. Empirically
 - game 1: people contribute 0
 - game 2: people contribute 1 and get punished if they do not do so
- 4. Predicted by the Fehr-Schmidt model