14.13 Economics and Psychology (Lecture 19)

Xavier Gabaix

April 22, 2004

1 FAIRNESS

1.1 Ultimatum Game

- a Proposer (P) and a receiver (R) split $\$ 10$
- P proposes s
- R can accept or reject
- if R accepts, the payoffs are $(\mathrm{P}, \mathrm{R})=(10-s, s)$
- if R rejects, they are $(0,0)$
- Evidence from "In Search of Homo Economicus: Behavioral Experiments in 15 Small-Scale Societies", American Economic Review 91, (2001), 73-78, by Henrich, Fehr, Boyd, Bowles, Gintis, Camerer and McElreath: Table 1.
- Societies with lots of interactions
- reputation is important (for example society with no or a very weak state)
- incentives to never accept something below 50\% (short term loss but long term gain)
- measure one dimension of fairness / equality

1.2 2 interesting variants

1. Market game with several proposers

- $n-1$ proposers who propose simultaneously s_{i}
- 1 responder who accepts or rejects the highest offer $s^{\max }=\max s_{i}$
- empirically $s^{\max }=10$: incentive to offer more than the other proposers

2. Market game with several responders

- 1 proposer
- n-1 responders
- if all reject the offer, everybody gets 0
- if some accept, the offer is randomly assigned among the responders who accepted
- empirically $s=\varepsilon$ and it is accepted

3. It would be nice to have a model that explains all of these phenomena.

1.3 Fehr-Schmidt QJE'99

- n players
- final monetary payoffs $x_{i} i=1 \ldots n$
- utility function

$$
U_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}-\frac{\alpha_{i}}{n-1} \sum_{j}\left(x_{j}-x_{i}\right)^{+}-\frac{\beta_{i}}{n-1} \sum_{j}\left(x_{i}-x_{j}\right)^{+}
$$

where $\alpha_{i} \geq \beta_{i} \geq 0$ and $1>\beta_{i}$. Notation $y^{+}=\max (y, 0)$

- utility of i as a function of the monetary payoff of $j x_{j}$
- if $x_{j}<x_{i}$, then $u_{i}=-\frac{\beta_{i}}{n-1}\left(x_{i}-x_{j}\right)+$ terms independent of x_{j}
- if $x_{j}>x_{i}$, then $u_{i}=-\frac{\alpha_{i}}{n-1}\left(x_{j}-x_{i}\right)+$ terms independent of x_{j}

- i cares about the payoffs j gets
- i dislikes that j gets more than him
- i dislikes that j gets less than him
- i cares more about being behind than being ahead

1.4 Application to the Ultimatum Game

- player 1 is the proposer
- player 2 is the receiver
- they try to share $\$ 1$
- $s=$ offer of the proposer

Receiver's strategy

- if he rejects, the payoffs are 0 and $U_{2}=0$
- if he accepts
- the payoffs are $x_{1}=1-s$ and $x_{2}=s$
- his utility is

$$
\begin{aligned}
U_{2} & =s-\alpha_{2}(1-s-s)^{+}-\beta_{2}(s-1+s)^{+} \\
& = \begin{cases}s-\alpha_{2}(1-2 s) & \text { if } \frac{1}{2} \geq s \\
s-\beta_{2}(2 s-1) & \text { if } \frac{1}{2} \leq s\end{cases} \\
& =\left\{\begin{array}{cl}
\left(1+\alpha_{2}\right) s-\alpha_{2} & \text { if } \frac{1}{2} \geq s \\
\left(1-2 \beta_{2}\right) s+\beta_{2} & \text { if } \frac{1}{2} \leq s
\end{array}\right.
\end{aligned}
$$

R accepts iff $s \in\left[s_{2}^{*}, 1\right]$, where $s_{2}^{*}=\frac{\alpha_{2}}{1+2 \alpha_{2}}$

- when $\alpha_{2}=\beta_{2}=0, s_{2}^{*}=0 \mathrm{R}$ accepts any offer
- when α_{2} is high, $s_{2}^{*} \simeq 0.5$ fairness is really important (at least not being behind is), R accepts only if $50 / 50$

Proposer's decision

- if $s<s_{2}^{*}, \mathrm{R}$ rejects then $U_{1}=0$
- if $s \geq s_{2}^{*}$, the payoffs are $x_{1}=1-s$ and $x_{2}=s$

$$
\begin{aligned}
U_{1} & =1-s-\alpha_{1}(s-1+s)^{+}-\beta_{1}(1-s-s)^{+} \\
& = \begin{cases}1-s-\alpha_{1}(2 s-1) & \text { if } \frac{1}{2} \leq s \\
1-s-\beta_{1}(1-2 s) & \text { if } \frac{1}{2} \geq s\end{cases} \\
& = \begin{cases}\left(1+\alpha_{2}\right) s-\alpha_{2} & \text { if } \frac{1}{2} \leq s \\
\left(1-2 \beta_{2}\right) s+\beta_{2} & \text { if } \frac{1}{2} \geq s\end{cases}
\end{aligned}
$$

$$
\begin{array}{lll}
\beta_{1}>.5 & s=.5 & \mathrm{R} \text { accepts } \\
\beta_{1}<.5 & s=s_{2}^{*}=\frac{\alpha_{2}}{1+2 \alpha_{2}} & \mathrm{R} \text { accepts }
\end{array}
$$

Remark: Empirically $s^{*} \simeq 1 / 3$ this implies $\alpha_{2} \simeq 1$ which means same weight on own wealth than on relative wealth with wealthier people.

Proposition 1: In the market game with $\mathrm{n}-1$ proposers, the equilibrium is $s^{*}=1$.

Proposition 2: In the market game with $n-1$ receivers, it exists an equilibrium with $s^{*}=0$.

1.5 Cooperation and Retaliation

(Public Good Games or Cooperation Games)

1. Game 1: "Pure public good game"

- n players
- player i contributes g_{i} to the public good
- monetary payoffs

$$
x_{i}=1-g_{i}+a \sum_{j} g_{j}
$$

with $a \in\left(\frac{1}{n}, 1\right)$

- if people are not altruistic $\alpha_{i}=\beta_{i}=0$
- individual rationality

$$
\frac{\partial x_{i}}{\partial g_{i}}=-1+a<0 \Longrightarrow g_{i}^{*}=0 \Longrightarrow x_{i}^{*}=1
$$

- social optimal

$$
\begin{aligned}
S & =\sum_{j} x_{j} \\
\frac{\partial S}{\partial g_{i}} & =\sum_{j} \frac{\partial x_{j}}{\partial g_{i}}=n a-1>0 \Longrightarrow g_{i}^{c}=1 \Longrightarrow x_{i}^{c}=n a
\end{aligned}
$$

2. Game 2: Public good game with punishment.

- everything is public knowledge
- player i can punish player j by an amount $p_{i j}$ with cost $c . p_{i j}$ with $c \in(0,1)$

3. Empirically

- game 1: people contribute 0
- game 2: people contribute 1 and get punished if they do not do so

4. Predicted by the Fehr-Schmidt model
