Psychology and Economics (Lecture 24)

Xavier Gabaix

May 11, 2004

1 Animal metabolism and other "universal" laws

- How much energy E does one need to make an animal of size M function?
- The naive guess would be CRS:

 $E \sim M$

If the size of the animal doubles, one needs twice the amount of energy.

• But Nature does better than that.

• If the size of the animal double, one needs less than twice the amount of energy.

$$E \sim M^{3/4}$$

ln $E = a + \frac{3}{4} \ln M$

- Explanation: West, Brown, Enquist (Science '97, Nature '99).
- Lots of "universal" laws similar in biology, physics. Understanding them is a hot area of research.
- In physics, "universality" has a precise, technical meaning: after rescaling, different metals etc. behave exactly the same.

- Perhaps there should be in economics:
 - Zipf's law $P(\text{Size} > x) \sim x^{-1}$: Cities, Firms (Axtell, Science '01)
 - Power law in the stock market: 3 for returns and number of trades, 3/2 for volumes. Theory in Gabaix et al. (*Nature* '03).

2 Zipf's law

- That's the statement that $\zeta = 1$.
- Original Zipf's law: Frequency of words in a text: Estoup (1916), Zipf (1949)
- Original power law in economics: For incomes, Pareto (1897)
- Zipf's law holds for cities
- Take U.S. Order cities by size. Largest: NYC = #1, LA = #2,...

• Regression with the 135 largest American metropolitan areas 1991.

$$ln Rank = 10.53 - 1.005 ln Size$$
(.010)
(1)

- $R^2 = .986$. (No tautology) "One of the strongest [non-trivial] facts in social sciences".
- This means $\ln P(\text{Size} > S) = a \zeta \ln S$ with $\zeta \simeq 1$, or

$$P(\text{Size} > S) \sim S^{-\zeta}$$
 (2)

- If largest city has 10 million inhabitants, the 10th city has 1 million, the 100th city 100,000... + interpretation with ratios
- One first explanation: Monkeys at a typewriter (Mandelbrot, 1961). Exercise: Work it out.

3 Power laws in Economics

$$F(x) = P(S > x) \simeq \frac{k}{x^{\zeta}}$$
$$f(x) = -F'(x) = \frac{k\zeta}{x^{\zeta+1}}$$

• Empirically, we see:

$$\ln P(S > x) \simeq -\zeta \ln x + c$$
$$\ln f(x) \simeq -(\zeta + 1) \ln x + c'$$

3.1 Simplest way to estimate ζ

- Rank units by size: $S_{(1)} \ge S_{(2)} \ge \dots$
- Plot InSize vs InRank
- See above which size one has a straight line
- In that domain, run:

 $\ln {\rm Rank} = -\zeta \ln {\rm Size} + C$

• True standard error: $\hat{\zeta}2/n$.

4 Axtell (2001)

• Studies the 5 million firms in the US, in 1997.

$$\ln f(S) = a - (\zeta + 1) \ln S$$
$$R^{2} = 0.993$$

$$\zeta = 1.059 \simeq 1$$

That's Zipf's law: $\zeta = 1$.

5 Other domains for Zipf's law

- Firms, size of bankruptcy, number of workers in strikes, exports
- Assets under management of mutual funds
- Popularity (number of clicks) of internet sites: Huberman (1999), Barabasi and Albert (1999)
- $\zeta =$ "power law exponent" = "Pareto exponent"
- Low ζ means high inequality.

- "Universal" laws: Same laws in different countries, time period, economic structures, trading mechanisms.
- →Need simple explanations that do not depend on the details of the system. Ideally, we want no tunable parameters.
- Other quantitative "laws" in economics? (besides Black-Sholes): Quantity theory of money $PY \sim M$.

6 Lots of power laws in physics

- Similar power laws are found in: earthquakes, solar eruptions, extinction of species, pieces of a vase.
- No general theory explains them and they do not have a "mathematical " exponent like 1.
- Reference: Didier Sornette, "Critical Phenomena in Natural Sciences" (Springer , 2003)
- Work often done by / with physicists ("econophysics", \sim 150 physicists working on this). More empirical that "Sante Fe" research, "complexity theory".

7 An explanation. Zipf's law with exponent 1

- Start from an arbitrary initial distribution.
- Cities follow similar processes: e.g. grow at 2%/year, \pm .5%. ("Gibrat's law").
- Consequence: the distribution converges to a steady state distribution which is Zipf, with exponent 1.
- The explanation is robust to new cities, several regions with different means and variances.
- Gibrat's law appears to be true empirically.

8 From Gibrat's law to Zipf's law (Gabaix '99)

• $S_t^i = (\text{Size of city } i \text{ at time } t) / (\text{Total expected population at time } t).$

$$E\left[\sum_{i=1}^{N} S_{t}^{i}\right] = 1$$
(3)

• Evolution

$$S_{t+1}^i = \gamma_{t+1}^i S_t^i \tag{4}$$

where γ_{t+1}^i =normalized growth rate of city *i*. i.i.d. and independent of *i*, with probability density $f(\gamma)$.

• (3) and (4) imply: $E[\gamma_{t+1}^i] = 1$, or

$$\int_0^\infty \gamma f(\gamma) d\gamma = 1 \tag{5}$$

• Distribution: $G_t(S) = P(S_t > S)$ has equation of motion:

$$G_{t+1}(S) = P(S_{t+1} > S) = P(\gamma_{t+1}S_t > S) = E[\mathbf{1}_{S_t > S/\gamma_{t+1}}]$$

= $E[E[\mathbf{1}_{S_t > S/\gamma_{t+1}} | \gamma_{t+1}]] = E[G_t(S/\gamma_{t+1})]$
= $\int_0^\infty G_t(S/\gamma)f(\gamma)d\gamma$ (6)

• Suppose that there is a steady state $G_t = G$. It verifies

$$G(S) = \int_0^\infty G(S/\gamma) f(\gamma) d\gamma$$
(7)

• Try the solution G(S) = a/S (=Zipf's law), using (5):

$$\int_0^\infty G(S/\gamma)f(\gamma)d\gamma = \int_0^\infty a/(S/\gamma)f(\gamma)d\gamma$$
$$= a/S \cdot \int_0^\infty \gamma f(g)d\gamma = a/S$$
$$= G(S)$$

- So G(S) = a/S satisfies the equation (7) of steady-state process: It works.
- In fact (Theorem), there is a steady state distribution, and it must be a/S.