14.13 Economics and Psychology (Lecture 5)

Xavier Gabaix

February 19, 2003

1 Second order risk aversion for EU

• The agent takes the 50/50 gamble $\Pi + \sigma$, $\Pi - \sigma$ iff:

$$B(\Pi) = \frac{1}{2}u(x + \sigma + \Pi) + \frac{1}{2}u(x - \sigma + \Pi) \ge u(x)$$

i.e. $\Pi \ge \Pi^*$ where:

$$B\left(\Pi^*\right) = u\left(x\right)$$

• Assume that u is twice differentiable and take a look at the Taylor expansion of the above equality for small σ .

$$B(\Pi) = u(x) + \frac{1}{2}u'(x) 2\Pi + \frac{1}{4}u''(x) 2\left[\sigma^2 + \Pi^2\right] + o\left(\sigma^2 + \Pi^2\right) = u(x)$$

then

$$\Pi = \frac{\rho}{2} \left[\sigma^2 + \Pi^2 \right] + o \left(\sigma^2 + \Pi^2 \right)$$

where
$$\rho = -\frac{u''}{u'}$$

• To solve :
$$\Pi = \frac{\rho}{2} \left[\sigma^2 + \Pi^2 \right]$$
 for small σ . Call $\rho' = \rho/2$.

• Barbarian way: Solve:

$$\Pi^2 - \frac{1}{\rho'}\Pi + \sigma^2 = 0$$

Exactly. Then take Taylor. One finds:

$$\Pi = \rho' \sigma^2 = \frac{\rho}{2} \sigma^2$$

- Elegant way: $\Pi = \rho' \left[\sigma^2 + \Pi^2 \right]$ for small σ .
 - Π will be small. Take a guess. If the expansion is $\Pi = k\sigma$, then we get:

$$k\sigma = \rho' \left[\sigma^2 + k^2 \sigma^2 \right]$$
$$k = \rho' \sigma \left[1 + k^2 \right]$$

contraction for $\sigma \rightarrow 0$, the RHS goes to 0 and the LHS is k. This guess doesn't work.

– Let's try instead $\Pi = k\sigma^2$. Then:

$$k\sigma^{2} = \rho' \left[\sigma^{2} + k^{2}\sigma^{4}\right]$$
$$= \rho'\sigma^{2} + o\left(\sigma^{2}\right)$$

 $\Rightarrow k =
ho' + o(1)$ after dividing both side by σ^2

that works, with $k = \rho'$. Conclusion:

$$\Pi = \frac{\rho}{2}\sigma^2.$$

• Note this method is really useful when the equation to solve doesn't have a closed form solution. For example, solve for small σ

$$\pi = \rho'(\sigma^2 + \pi^2 + \pi^7)$$

solution postulate $\Pi = k\sigma^2$, plug it back in the equation to solve, then take $\sigma \to 0$ and it works for $k = \rho'$

• The σ^2 indicates "second order" risk aversion.

2 First order risk aversion of PT

- Consider same gamble as for EU. Take the gamble iff $\Pi \ge \Pi^*$ where $\pi(.5)u(\Pi^* + \sigma) + \pi(.5)u(\Pi^* - \sigma) = 0$
- We will show that in PT, as σ → 0, the risk premium Π is of the order of σ when reference wealth x = 0. This is called the *first order risk* aversion.
- Let's compute Π for $u(x) = x^{\alpha}$ for $x \ge 0$ and $u(x) = -\lambda |x|^{\alpha}$ for $x \le 0$.

• The premium Π at $x=\mathbf{0}$ satisfies

$$0 = \pi(\frac{1}{2})\left(\sigma + \Pi^*\right)^{\alpha} + \pi(\frac{1}{2})\left(-\lambda\right)\left|-\sigma + \Pi^*\right|^{\alpha}$$

cancel $\pi(\frac{1}{2})$ and use the fact that $-\sigma + \Pi^* < 0$ to get

$$0 = (\sigma + \Pi^*)^{\alpha} - \lambda(\sigma - \Pi^*)^{\alpha}$$
$$\iff (\sigma + \Pi^*)^{\alpha} = \lambda(\sigma - \Pi^*)^{\alpha}$$
$$\iff \sigma + \Pi^* = \lambda^{1/\alpha} [\sigma - \Pi^*]$$

then

$$\Pi^* = \frac{\lambda^{\frac{1}{\alpha}} - 1}{\lambda^{\frac{1}{\alpha}} + 1} \sigma = k\sigma$$

where k is defined appropriately.

• Empirically:

$$\lambda = 2, \ lpha \simeq 1$$

 $k \simeq rac{2-1}{2+1} = rac{1}{3}$

• Note that when $\lambda = 1$, the agent is risk neutral and the risk premium is 0.

2.1 Calibration 1

- Consider an EU agent with a constant elasticity of substitution, CES, utility, i.e. $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$.
- Gamble 1
 \$50,000 with probability 1/2
 \$100,000 with probability 1/2
- Gamble 2. x for sure.
- Typical x that makes people indifferent between the two gambles belongs to (60k, 75k) (though some people are risk loving and ask for higher x).

• If x = 65k, what is γ

$$.5 \ u(W + 50) + .5 \ u(W + 100) = u(W + x)$$
$$.5 \cdot W^{1-\gamma} \cdot 50^{1-\gamma} + .5 \cdot W^{1-\gamma} \cdot 100^{1-\gamma} = W^{1-\gamma} \cdot x^{1-\gamma}$$
$$5 \cdot 50^{1-\gamma} + .5 \cdot 100^{1-\gamma} = x^{1-\gamma}$$

• Note the relation between x and the elasticity of substitution γ :

• Evidence on financial markets calls for γ bigger than 10. This is the equity premium puzzle.

2.2 Calibration 2

- Gamble 1
 \$11 with probability 1/2
 \$-10 with probability 1/2
- Gamble 2. Get \$0 for sure.
- If someone prefers Gamble 2, she or he satisfies

$$u(W) > \frac{1}{2}u(W + \Pi - \sigma) + \frac{1}{2}u(W + \Pi + \sigma).$$

Here, $\Pi =$ \$.5 and $\sigma =$ \$10.5. We know that in EU

$$\Pi < \Pi^* = \frac{\rho}{2}\sigma^2$$

And thus with CES utility $\rho = -\frac{u''(W)}{u'(W)} = -\frac{-\gamma W^{-\gamma-1}}{W^{-\gamma}} = \frac{\gamma}{W}$ $\Pi < \frac{\rho}{2}\sigma^2 = \frac{\gamma}{2W}\sigma^2 \Leftrightarrow \frac{2W\Pi}{\sigma^2} < \gamma$

forces large γ as the wealth W is larger than 10⁵ easily.

• Here:

$$\gamma > \frac{2W\Pi}{\sigma^2} = \frac{2 \cdot 10^5 \cdot .5}{10.5^2} \approx 10^3$$

 Conclusion: very hard to calibrate the same model to large and small gambles using EU.

2.3 Calibration Conclusions

• What would a PT agent do? If $\alpha = 1$, $\lambda = 2$, in calibration 2 he won't take gamble 1 as

$$\pi(.5)11^{lpha} + \pi(.5)(-\lambda \cdot 10^{lpha}) = -9\pi(.5) < 0$$

- In PT we have $\Pi^* = k\sigma$. For $W = 10^4$, $\gamma = 2$, and $\sigma = 0.5$ the risk premium is $\Pi^* = k\sigma = \frac{1}{3} \cdot .5 \approx$ \$.2 while in EU $\Pi^* = \frac{\gamma}{2W}\sigma^2 \approx$ \$.00002
- \bullet If we want to fit an EU parameter γ to a PT agent we get

$$\mathsf{T}^{PT}(\sigma) = \mathsf{\Pi}^{EU}(\sigma)$$

 $k\sigma = rac{\gamma}{2W}\sigma^2$

then

$$\hat{\gamma} = rac{2kW}{\sigma}$$

and this explodes as $\sigma \rightarrow 0$.

- If someone is averse to 50-50 lose 100/gain g for all wealth levels then he or she will turn down 50-50 lose L-gain G in the table
- Guess:

L ackslash g	\$101	\$105	\$110	\$125
\$400	\$400	\$420	\$550	
\$800	\$800			
\$1000	\$1,010			
\$2000				
\$10,000				

L ackslash g	\$101	\$105	\$110	\$125
\$400	\$400	\$420	\$550	\$1,250
\$800	\$800	\$1,050	\$2,090	∞
\$1000	\$1,010	\$1,570	∞	∞
\$2000	\$2,320	∞	∞	∞
\$10,000	∞	∞	∞	∞

cf paper by Matt Rabin

2.4 What does it mean?

- EU is still good for modelling.
- Even behavioral economists stick to it when they are not interested in risk taking behavior, but in fairness for example.
- The reason is that EU is nice, simple, and parsimonious.

3 Two extensions of PT

• Both outcomes, x and y, are positive, 0 < y < x. Then,

$$V = v(y) + \pi(p)(v(x) - v(y)).$$

Why not $V = \pi(p) v(x) + \pi(1-p) v(y)$? Because it becomes selfcontradictory when x = y and we stick to K-T calibration that puts $\pi(.5) < .5$. • Continuous gambles, distribution f(x)EU gives:

$$V = \int_{-\infty}^{+\infty} u(x) f(x) dx$$

PT gives:

$$V = \int_0^{+\infty} u(x) f(x) \pi' (P(g \ge x)) dx$$
$$+ \int_{-\infty}^0 u(x) f(x) \pi' (P(g \le x)) dx$$