14.13 Economics and Psychology (Lecture 5)

Xavier Gabaix

February 19, 2003

1 Second order risk aversion for EU

- The agent takes the $50 / 50$ gamble $\Pi+\sigma, \Pi-\sigma$ iff:

$$
B(\Pi)=\frac{1}{2} u(x+\sigma+\Pi)+\frac{1}{2} u(x-\sigma+\Pi) \geq u(x)
$$

i.e. $\Pi \geq \Pi^{*}$ where:

$$
B\left(\Pi^{*}\right)=u(x)
$$

- Assume that u is twice differentiable and take a look at the Taylor expansion of the above equality for small σ. .

$$
B(\Pi)=u(x)+\frac{1}{2} u^{\prime}(x) 2 \Pi+\frac{1}{4} u^{\prime \prime}(x) 2\left[\sigma^{2}+\Pi^{2}\right]+o\left(\sigma^{2}+\Pi^{2}\right)=u(x)
$$

then

$$
\Pi=\frac{\rho}{2}\left[\sigma^{2}+\Pi^{2}\right]+o\left(\sigma^{2}+\Pi^{2}\right)
$$

where $\rho=-\frac{u^{\prime \prime}}{u^{\prime}}$

- To solve : $\Pi=\frac{\rho}{2}\left[\sigma^{2}+\Pi^{2}\right]$ for small σ. Call $\rho^{\prime}=\rho / 2$.
- Barbarian way: Solve:

$$
\Pi^{2}-\frac{1}{\rho^{\prime}} \Pi+\sigma^{2}=0
$$

Exactly. Then take Taylor. One finds:

$$
\Pi=\rho^{\prime} \sigma^{2}=\frac{\rho}{2} \sigma^{2}
$$

- Elegant way: $\Pi=\rho^{\prime}\left[\sigma^{2}+\Pi^{2}\right]$ for small σ.
- Π will be small. Take a guess. If the expansion is $\Pi=k \sigma$, then we get:

$$
\begin{aligned}
k \sigma & =\rho^{\prime}\left[\sigma^{2}+k^{2} \sigma^{2}\right] \\
k & =\rho^{\prime} \sigma\left[1+k^{2}\right]
\end{aligned}
$$

contraction for $\sigma \rightarrow 0$, the RHS goes to 0 and the LHS is k. This guess doesn't work.

- Let's try instead $\Pi=k \sigma^{2}$. Then:

$$
\begin{aligned}
k \sigma^{2} & =\rho^{\prime}\left[\sigma^{2}+k^{2} \sigma^{4}\right] \\
& =\rho^{\prime} \sigma^{2}+o\left(\sigma^{2}\right)
\end{aligned}
$$

$\Rightarrow k=\rho^{\prime}+o(1)$ after dividing both side by σ^{2}
that works, with $k=\rho^{\prime}$. Conclusion:

$$
\Pi=\frac{\rho}{2} \sigma^{2}
$$

- Note this method is really useful when the equation to solve doesn't have a closed form solution. For example, solve for small σ

$$
\pi=\rho^{\prime}\left(\sigma^{2}+\pi^{2}+\pi^{7}\right)
$$

solution postulate $\Pi=k \sigma^{2}$, plug it back in the equation to solve, then take $\sigma \rightarrow 0$ and it works for $k=\rho^{\prime}$

- The σ^{2} indicates "second order" risk aversion.

2 First order risk aversion of PT

- Consider same gamble as for EU . Take the gamble iff $\Pi \geq \Pi^{*}$ where

$$
\pi(.5) u\left(\Pi^{*}+\sigma\right)+\pi(.5) u\left(\Pi^{*}-\sigma\right)=0
$$

- We will show that in PT, as $\sigma \rightarrow 0$, the risk premium Π is of the order of σ when reference wealth $x=0$. This is called the first order risk aversion.
- Let's compute Π for $u(x)=x^{\alpha}$ for $x \geq 0$ and $u(x)=-\lambda|x|^{\alpha}$ for $x \leq 0$.
- The premium Π at $x=0$ satisfies

$$
0=\pi\left(\frac{1}{2}\right)\left(\sigma+\Pi^{*}\right)^{\alpha}+\pi\left(\frac{1}{2}\right)(-\lambda)\left|-\sigma+\Pi^{*}\right|^{\alpha}
$$

cancel $\pi\left(\frac{1}{2}\right)$ and use the fact that $-\sigma+\Pi^{*}<0$ to get

$$
\begin{aligned}
0 & =\left(\sigma+\Pi^{*}\right)^{\alpha}-\lambda\left(\sigma-\Pi^{*}\right)^{\alpha} \\
& \Longleftrightarrow\left(\sigma+\Pi^{*}\right)^{\alpha}=\lambda\left(\sigma-\Pi^{*}\right)^{\alpha} \\
& \Longleftrightarrow \sigma+\Pi^{*}=\lambda^{1 / \alpha}\left[\sigma-\Pi^{*}\right]
\end{aligned}
$$

then

$$
\Pi^{*}=\frac{\lambda^{\frac{1}{\alpha}}-1}{\lambda^{\frac{1}{\alpha}}+1} \sigma=k \sigma
$$

where k is defined appropriately.

- Empirically:

$$
\begin{aligned}
& \lambda=2, \alpha \simeq 1 \\
& k \simeq \frac{2-1}{2+1}=\frac{1}{3}
\end{aligned}
$$

- Note that when $\lambda=1$, the agent is risk neutral and the risk premium is 0 .

2.1 Calibration 1

- Consider an EU agent with a constant elasticity of substitution, CES, utility, i.e. $u(c)=\frac{c^{1-\gamma}}{1-\gamma}$.
- Gamble 1
$\$ 50,000$ with probability $1 / 2$
$\$ 100,000$ with probability $1 / 2$
- Gamble 2. $\$ x$ for sure.
- Typical x that makes people indifferent between the two gambles belongs to ($60 k, 75 k$) (though some people are risk loving and ask for higher x).
- If $x=65 k$, what is γ

$$
\begin{aligned}
.5 u(W+50)+.5 u(W+100) & =u(W+x) \\
.5 \cdot W^{1-\gamma} \cdot 50^{1-\gamma}+.5 \cdot W^{1-\gamma} \cdot 100^{1-\gamma} & =W^{1-\gamma} \cdot x^{1-\gamma} \\
5 \cdot 50^{1-\gamma}+.5 \cdot 100^{1-\gamma} & =x^{1-\gamma}
\end{aligned}
$$

- Note the relation between x and the elasticity of substitution γ :

$$
\begin{array}{cccccccc}
x & 75 k & 70 k & 63 k & 58 k & 54 k & 51.9 k & 51.2 k \\
\gamma & 0 & 1 & 3 & 5 & 10 & 20 & 30
\end{array}
$$

Right γ seems to be between 1 and 10 .

- Evidence on financial markets calls for γ bigger than 10. This is the equity premium puzzle.

2.2 Calibration 2

- Gamble 1
$\$ 11$ with probability $1 / 2$
\$-10 with probability $1 / 2$
- Gamble 2. Get $\$ 0$ for sure.
- If someone prefers Gamble 2, she or he satisfies

$$
u(W)>\frac{1}{2} u(W+\Pi-\sigma)+\frac{1}{2} u(W+\Pi+\sigma) .
$$

Here, $\Pi=\$.5$ and $\sigma=\$ 10.5$. We know that in EU

$$
\Pi<\Pi^{*}=\frac{\rho}{2} \sigma^{2}
$$

And thus with CES utility $\rho=-\frac{u^{\prime \prime}(W)}{u^{\prime}(W)}=-\frac{-\gamma W^{-\gamma-1}}{W^{-\gamma}}=\frac{\gamma}{W}$

$$
\Pi<\frac{\rho}{2} \sigma^{2}=\frac{\gamma}{2 W} \sigma^{2} \Leftrightarrow \frac{2 W \Pi}{\sigma^{2}}<\gamma
$$

forces large γ as the wealth W is larger than 10^{5} easily.

- Here:

$$
\gamma>\frac{2 W \Pi}{\sigma^{2}}=\frac{2 \cdot 10^{5} \cdot .5}{10.5^{2}} \approx 10^{3}
$$

- Conclusion: very hard to calibrate the same model to large and small gambles using EU.

2.3 Calibration Conclusions

- What would a PT agent do? If $\alpha=1, \lambda=2$, in calibration 2 he won't take gamble 1 as

$$
\pi(.5) 11^{\alpha}+\pi(.5)\left(-\lambda \cdot 10^{\alpha}\right)=-9 \pi(.5)<0
$$

- In PT we have $\Pi^{*}=k \sigma$. For $W=10^{4}, \gamma=2$, and $\sigma=0.5$ the risk premium is $\Pi^{*}=k \sigma=\frac{1}{3} \cdot .5 \approx \$.2$ while in EU $\Pi^{*}=\frac{\gamma}{2 W} \sigma^{2} \approx \$.00002$
- If we want to fit an EU parameter γ to a PT agent we get

$$
\begin{aligned}
\Pi^{P T}(\sigma) & =\Pi^{E U}(\sigma) \\
k \sigma & =\frac{\gamma}{2 W} \sigma^{2}
\end{aligned}
$$

then

$$
\hat{\gamma}=\frac{2 k W}{\sigma}
$$

and this explodes as $\sigma \rightarrow 0$.

- If someone is averse to 50-50 lose $\$ 100 /$ gain g for all wealth levels then he or she will turn down 50-50 lose L-gain G in the table
- Guess:

$L \backslash g$	$\$ 101$	$\$ 105$	$\$ 110$	$\$ 125$
$\$ 400$	$\$ 400$	$\$ 420$	$\$ 550$	
$\$ 800$	$\$ 800$			
$\$ 1000$	$\$ 1,010$			
$\$ 2000$				
$\$ 10,000$				

$L \backslash g$	$\$ 101$	$\$ 105$	$\$ 110$	$\$ 125$
$\$ 400$	$\$ 400$	$\$ 420$	$\$ 550$	$\$ 1,250$
$\$ 800$	$\$ 800$	$\$ 1,050$	$\$ 2,090$	∞
$\$ 1000$	$\$ 1,010$	$\$ 1,570$	∞	∞
$\$ 2000$	$\$ 2,320$	∞	∞	∞
$\$ 10,000$	∞	∞	∞	∞

cf paper by Matt Rabin

2.4 What does it mean?

- EU is still good for modelling.
- Even behavioral economists stick to it when they are not interested in risk taking behavior, but in fairness for example.
- The reason is that EU is nice, simple, and parsimonious.

3 Two extensions of PT

- Both outcomes, x and y, are positive, $0<y<x$. Then,

$$
V=v(y)+\pi(p)(v(x)-v(y)) .
$$

Why not $V=\pi(p) v(x)+\pi(1-p) v(y)$? Because it becomes selfcontradictory when $x=y$ and we stick to K-T calibration that puts $\pi(.5)<.5$.

- Continuous gambles, distribution $f(x)$

EU gives:

$$
V=\int_{-\infty}^{+\infty} u(x) f(x) d x
$$

PT gives:

$$
\begin{aligned}
V & =\int_{0}^{+\infty} u(x) f(x) \pi^{\prime}(P(g \geq x)) d x \\
& +\int_{-\infty}^{0} u(x) f(x) \pi^{\prime}(P(g \leq x)) d x
\end{aligned}
$$

