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1 Prospect Theory value of the game

Consider gambles with two outcomes: x with probability p, and y with

probability 1− p where x ≥ 0 ≥ y.

The PT value of the game is

V = π (p)u (x) + π (1− p)u (y)



• In prospect theory the probability weighting π is concave first and then
convex, e.g.

π (p) =
pβ

pβ + (1− p)β

for some β ∈ (0, 1). In the figure below p is on the horizontal axis and

π (p) on the vertical one.
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• A useful parametrization of the PT value function is a power law

function

u (x) = |x|α for x ≥ 0
u (x) = −λ |x|α for x ≤ 0
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Meaning - Fourfold pattern of risk aversion u

• Risk aversion in the domain of likely gains

• Risk seeking in the domain of unlikely gains

• Risk seeking in the domain of likely losses

• Risk aversion in the domain of unlikely losses

See tables on next page.
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Risk seeking
Risk neutral
Risk averse

78a

88a

87a

7

680a

Positive Prospects

Preferences between Positive and Negative Prospects

Percentage of Risk-Seeking Choices

a  Values that correspond to the fourfold pattern.
Note:  The percentage of risk-seeking choices is given for low (p < . 1)
and high (p > .5) probabilities of gain and loss for each subject (risk-
neutral choices were excluded). The overall percentage of risk-seeking,
risk-neutral, and risk-averse choices for each type of prospect appears 
at the bottom of the table.

Negative Prospects

Problem 3:  (4,000, .80)   < (3000).

Problem 4:  (4,000, .20)   > (3,000, .25).

Problem 7:  (3,000, .90)   > (6,000, .45).

Problem 8:  (3,000, .002)  < (6,000, .001). Problem 8':  (-3,000, .002)  > (-6,000, .001).

Problem 7':  (-3,000, .90)    < (-6,000, .45).

Problem 4':  (-4,000, .20)   < (-3,000, .25).

Problem 3':  (-4,000, .80)    > (-3000).
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Properties of power law PT value functions

• they are scale invariant, i.e. for any k > 0

Consider a gamble and the same gamble scaled up by k:

g =

(
x
y

with prob p
with prob 1− p

kg =

(
kx
ky

with prob p
with prob 1− p

then

V PT (kg) = kαV PT (g)



• if someone prefers g to g0 then he will prefer kg to kg0 for k > 0

• if x, y ≥ 0, V (−g) = −λV (g)

• if x0, y0 ≥ 0 and someone prefers g to g0 then he will prefer −g0 to −g



2 How robust are the results?

• Very robust: loss aversion at the reference point, λ > 1

• Medium robust: convexity of u for x < 0

• Slightly robust: underweighting and overweighting of probabilities π (p) ≷
p



3 In applications we often use a simplified PT

(prospect theory):

π (p) = p

and

u (x) = x for x ≥ 0
u (x) = λx for x ≤ 0



4 Second order risk aversion of EU

• Consider a gamble σ and −σ with 50 : 50 chances.

• Question: what risk premium Π would people pay to avoid the small
risk σ?

• We will show that as σ → 0 this premium is O
³
σ2
´
. This is called

second order risk aversion.

• In fact we will show that for twice continuously differentiable utilities:
Π (σ) ∼= ρ

2
σ2,

where ρ is the curvature of u at 0 that is ρ = −u00
u0 .



• Let’s generalize and consider an agent starting with wealth x. The

agent takes the gamble iff:

B (Π) =
1

2
u (x+ Π+ σ) +

1

2
u (x+ Π− σ) ≥ u (x)

i.e. Π ≥ Π∗ where:

B (Π∗) = u (x)



• Assume that u is twice differentiable and take the Taylor expansion of
B(Π) for small σ and Π:

u(x+Π+ σ) = u(x) + u0(x)(Π+ σ) +
1

2
u00(x)(Π+ σ)2 + o(Π+ σ)2

u(x+Π− σ) = u(x) + u0(x)(Π− σ) +
1

2
u00(x)(Π− σ)2 + o(Π− σ)2

hence

B (Π) = u (x) + u0 (x)Π+ 1
2
u00 (x)

h
σ2 + Π2

i
+ o

³
σ2 + Π2

´
Then use the definition B(Π∗) = u(x) to get

Π∗ = ρ

2

h
σ2 + Π

∗2i+ o
³
σ2 + Π∗2

´

• to solve : Π∗ = ρ
2

h
σ2 + Π∗2

i
for small σ, call ρ0 = ρ/2.



• Barbaric way :

— find the roots of Π∗2 − 1
ρ0Π

∗ + σ2 = 0.

∗ compute the discriminant

∆ =
1

ρ02
− 4σ2

∗ the roots are Π∗ = 1
2ρ0 ± 1

2

µ
1
ρ02 − 4σ2

¶1
2

Π∗ = 1

2ρ0
± 1
2

Ã
1

ρ02
− 4σ2

!1
2

∗ as when there is no risk, the risk premium should be 0, then the



relevant root is:

Π∗ = 1

2ρ0
− 1
2

Ã
1

ρ02
− 4σ2

!1
2

— take the Taylor expansion for small σ

Π∗ = 1

2ρ0
− 1

2ρ0
³
1− 4ρ02σ2

´1
2

=
1

2ρ0
− 1

2ρ0
µ
1− 1

2
4ρ02σ2 + o(σ2)

¶
= ρ0σ2

— then remember that ρ0 = ρ/2:

Π∗=ρ
2σ
2


