14.13 Economics and Psychology (Lecture 4)

Xavier Gabaix

February 12, 2004

1 Prospect Theory value of the game

Consider gambles with two outcomes: x with probability p, and y with probability $1-p$ where $x \geq 0 \geq y$.

The PT value of the game is

$$
V=\pi(p) u(x)+\pi(1-p) u(y)
$$

- In prospect theory the probability weighting π is concave first and then convex, e.g.

$$
\pi(p)=\frac{p^{\beta}}{p^{\beta}+(1-p)^{\beta}}
$$

for some $\beta \in(0,1)$. In the figure below p is on the horizontal axis and $\pi(p)$ on the vertical one.

- A useful parametrization of the PT value function is a power law function

$$
\begin{aligned}
& u(x)=|x|^{\alpha} \text { for } x \geq 0 \\
& u(x)=-\lambda|x|^{\alpha} \text { for } x \leq 0
\end{aligned}
$$

Meaning - Fourfold pattern of risk aversion u

- Risk aversion in the domain of likely gains
- Risk seeking in the domain of unlikely gains
- Risk seeking in the domain of likely losses
- Risk aversion in the domain of unlikely losses

See tables on next page.

Positive Prospects		Negative Prospects	
Problem 3: $(4,000, .80)$	< (3000).	Problem 3': $(-4,000, .80)$	$>$ (-3000).
$N=95 \quad[20]$	[80]*	N=95 [92]*	[8]
Problem 4: $(4,000, .20)$	$>(3,000, .25)$.	Problem 4': $(-4,000, .20)$	$<(-3,000, .25)$
$N=95 \quad[65] *$	[35]	$N=95 \quad[42]$	[58]
Problem 7: $(3,000, .90)$	$>(6,000, .45)$.	Problem 7': $(-3,000, .90)$	$<(-6,000, .45)$.
$N=66 \quad[86] *$	[14]	$N=66 \quad$ [8]	[92]*
Problem 8: $(3,000, .002)$	< (6,000, .001).	Problem 8': $(-3,000, .002)$	$>$ (-6,000, .001).
$N=66 \quad[27]$	[73]*	$N=66 \quad[70]^{*}$	[30]

Subject	Percentage of Risk-Seeking Choices			
	Gain		Loss	
	$p \leq .1$	$p \geq .5$	$p \leq .1$	$p \geq .5$
1	100	38	30	100
2	85	33	20	75
3	100	10	0	93
4	71	0	30	58
5	83	0	20	100
6	100	5	0	100
7	100	10	30	86
8	87	0	10	100
9	16	0	80	100
10	83	0	0	93
11	100	26	0	100
12	100	16	10	100
13	87	0	10	94
14	100	21	30	100
15	66	0	30	100
16	60	5	10	100
17	100	15	20	100
18	100	22	10	93
19	60	10	60	63
20	100	5	0	81
21	100	0	0	100
22	100	0	0	92
23	100	31	0	100
24	71	0	80	100
25	100	0	10	87
Risk seeking	$78^{\text {a }}$	10	20	$87^{\text {a }}$
Risk neutral	12	2	0	7
Risk averse	10	$88^{\text {a }}$	$80^{\text {a }}$	6

a Values that correspond to the fourfold pattern.
Note: The percentage of risk-seeking choices is given for low ($p \leq .1$) and high ($\mathrm{p} \geq .5$) probabilities of gain and loss for each subject (riskneutral choices were excluded). The overall percentage of risk-seeking, risk-neutral, and risk-averse choices for each type of prospect appears at the bottom of the table.

Properties of power law PT value functions

- they are scale invariant, i.e. for any $k>0$

Consider a gamble and the same gamble scaled up by k :

$$
\begin{gathered}
g= \begin{cases}x & \text { with prob } p \\
y & \text { with prob } 1-p\end{cases} \\
k g= \begin{cases}k x & \text { with prob } p \\
k y & \text { with prob } 1-p\end{cases}
\end{gathered}
$$

then

$$
V^{P T}(k g)=k^{\alpha} V^{P T}(g)
$$

- if someone prefers g to g^{\prime} then he will prefer $k g$ to $k g^{\prime}$ for $k>0$
- if $x, y \geq 0, V(-g)=-\lambda V(g)$
- if $x^{\prime}, y^{\prime} \geq 0$ and someone prefers g to g^{\prime} then he will prefer $-g^{\prime}$ to $-g$

2 How robust are the results?

- Very robust: loss aversion at the reference point, $\lambda>1$
- Medium robust: convexity of u for $x<0$
- Slightly robust: underweighting and overweighting of probabilities $\pi(p) \gtrless$ p

3 In applications we often use a simplified PT
(prospect theory):

$$
\pi(p)=p
$$

and

$$
\begin{aligned}
& u(x)=x \text { for } x \geq 0 \\
& u(x)=\lambda x \text { for } x \leq 0
\end{aligned}
$$

4 Second order risk aversion of EU

- Consider a gamble σ and $-\sigma$ with 50 : 50 chances.
- Question: what risk premium Π would people pay to avoid the small risk σ ?
- We will show that as $\sigma \rightarrow 0$ this premium is $O\left(\sigma^{2}\right)$. This is called second order risk aversion.
- In fact we will show that for twice continuously differentiable utilities:

$$
\Pi(\sigma) \cong \frac{\rho}{2} \sigma^{2},
$$

where ρ is the curvature of u at 0 that is $\rho=-\frac{u^{\prime \prime}}{u^{\prime}}$.

- Let's generalize and consider an agent starting with wealth x. The agent takes the gamble iff:

$$
B(\Pi)=\frac{1}{2} u(x+\Pi+\sigma)+\frac{1}{2} u(x+\Pi-\sigma) \geq u(x)
$$

i.e. $\Pi \geq \Pi^{*}$ where:

$$
B\left(\Pi^{*}\right)=u(x)
$$

- Assume that u is twice differentiable and take the Taylor expansion of $B(\Pi)$ for small σ and Π :

$$
\begin{aligned}
& u(x+\Pi+\sigma)=u(x)+u^{\prime}(x)(\Pi+\sigma)+\frac{1}{2} u^{\prime \prime}(x)(\Pi+\sigma)^{2}+o(\Pi+\sigma)^{2} \\
& u(x+\Pi-\sigma)=u(x)+u^{\prime}(x)(\Pi-\sigma)+\frac{1}{2} u^{\prime \prime}(x)(\Pi-\sigma)^{2}+o(\Pi-\sigma)^{2}
\end{aligned}
$$

hence

$$
B(\Pi)=u(x)+u^{\prime}(x) \Pi+\frac{1}{2} u^{\prime \prime}(x)\left[\sigma^{2}+\Pi^{2}\right]+o\left(\sigma^{2}+\Pi^{2}\right)
$$

Then use the definition $B\left(\Pi^{*}\right)=u(x)$ to get

$$
\Pi^{*}=\frac{\rho}{2}\left[\sigma^{2}+\Pi^{* 2}\right]+o\left(\sigma^{2}+\Pi^{* 2}\right)
$$

- to solve : $\Pi^{*}=\frac{\rho}{2}\left[\sigma^{2}+\Pi^{* 2}\right]$ for small σ, call $\rho^{\prime}=\rho / 2$.
- Barbaric way:
- find the roots of $\Pi^{* 2}-\frac{1}{\rho^{\prime}} \Pi^{*}+\sigma^{2}=0$.
* compute the discriminant

$$
\Delta=\frac{1}{\rho^{\prime 2}}-4 \sigma^{2}
$$

$*$ the roots are $\Pi^{*}=\frac{1}{2 \rho^{\prime}} \pm \frac{1}{2}\left(\frac{1}{\rho^{\prime 2}}-4 \sigma^{2}\right)^{\frac{1}{2}}$

$$
\Pi^{*}=\frac{1}{2 \rho^{\prime}} \pm \frac{1}{2}\left(\frac{1}{\rho^{\prime 2}}-4 \sigma^{2}\right)^{\frac{1}{2}}
$$

* as when there is no risk, the risk premium should be 0 , then the
relevant root is:

$$
\Pi^{*}=\frac{1}{2 \rho^{\prime}}-\frac{1}{2}\left(\frac{1}{\rho^{\prime 2}}-4 \sigma^{2}\right)^{\frac{1}{2}}
$$

- take the Taylor expansion for small σ

$$
\begin{aligned}
\Pi^{*} & =\frac{1}{2 \rho^{\prime}}-\frac{1}{2 \rho^{\prime}}\left(1-4 \rho^{\prime 2} \sigma^{2}\right)^{\frac{1}{2}} \\
& =\frac{1}{2 \rho^{\prime}}-\frac{1}{2 \rho^{\prime}}\left(1-\frac{1}{2} 4 \rho^{\prime 2} \sigma^{2}+o\left(\sigma^{2}\right)\right) \\
& =\rho^{\prime} \sigma^{2}
\end{aligned}
$$

- then remember that $\rho^{\prime}=\rho / 2$:

$$
\Pi^{*}=\frac{\rho}{2} \sigma^{2}
$$

