14.13 Economics and Psychology (Lecture 4)

Xavier Gabaix

February 12, 2004

1 Prospect Theory value of the game

Consider gambles with two outcomes: x with probability p, and y with probability 1 - p where $x \ge 0 \ge y$.

The PT value of the game is

$$V = \pi(p) u(x) + \pi(1-p) u(y)$$

 In prospect theory the probability weighting π is concave first and then convex, e.g.

$$\pi(p) = \frac{p^{\beta}}{p^{\beta} + (1-p)^{\beta}}$$

for some $\beta \in (0, 1)$. In the figure below p is on the horizontal axis and $\pi(p)$ on the vertical one.

• A useful parametrization of the PT value function is a power law function

$$u(x) = |x|^{lpha} ext{ for } x \ge 0$$

 $u(x) = -\lambda |x|^{lpha} ext{ for } x \le 0$

Meaning - Fourfold pattern of risk aversion \boldsymbol{u}

- Risk aversion in the domain of likely gains
- Risk seeking in the domain of unlikely gains
- Risk seeking in the domain of likely losses
- Risk aversion in the domain of unlikely losses

See tables on next page.

Preferences between Positive and Negative Prospects				
Positive Prospects	Negative Prospects			
Problem 3: (4,000,.80) < (3000).	Problem 3': (-4,000, .80) > (-3000).			
N = 95 [20] [80]* Problem 4: (4,000,.20) > (3,000,.25).	N = 95 [92]* [8] Problem 4': (-4,000,.20) < (-3,000,.25).			
N = 95 [65]* [35] Problem 7: (3,000,.90) > (6,000,.45).	N = 95 [42] [58] Problem 7': (-3,000,.90) < (-6,000,.45).			
$N = 66$ $[86]^*$ $[14]$ Problem 8: (3,000,.002) < (6,000,.001).	N = 66[8][92]*Problem 8': (-3,000,.002)> (-6,000,.001). $N = 66$ [70]*[30]			

Percentage of Risk-Seeking Choices					
	Gain		Loss		
Subject	<i>p</i> ≤ .1	<i>p</i> ≥ .5	<i>p</i> ≤ .1	<i>p</i> ≥ .5	
1	100	38	30	100	
2	85	33	20	75	
3	100	10	0	93	
4	71	0	30	58	
5	83	0	20	100	
6	100	5	0	100	
7	100	10	30	86	
8	87	0	10	100	
9	16	0	80	100	
10	83	0	0	93	
11	100	26	0	100	
12	100	16	10	100	
13	87	0	10	94	
14	100	21	30	100	
15	66	0	30	100	
16	60	5	10	100	
17	100	15	20	100	
18	100	22	10	93	
19	60	10	60	63	
20	100	5	0	81	
21	100	0	0	100	
22	100	0	0	92	
23	100	31	0	100	
24	71	0	80	100	
25	100	0	10	87	
Risk seeking	78 ^a	10	20	87 ^a	
Risk neutral	12	2	0	7	
Risk averse	10	88 ^a	80 ^a	6	

^a Values that correspond to the fourfold pattern.

Note: The percentage of risk-seeking choices is given for low ($p \le .1$) and high ($p \ge .5$) probabilities of gain and loss for each subject (risk-neutral choices were excluded). The overall percentage of risk-seeking, risk-neutral, and risk-averse choices for each type of prospect appears at the bottom of the table.

Properties of power law PT value functions

• they are scale invariant, i.e. for any k > 0

Consider a gamble and the same gamble scaled up by k:

$$g = \left\{ \begin{array}{ll} x & \text{with prob } p \\ y & \text{with prob } \mathbf{1} - p \end{array} \right.$$

$$kg = \begin{cases} kx & \text{with prob } p \\ ky & \text{with prob } 1-p \end{cases}$$

then

$$V^{PT}(kg) = k^{\alpha} V^{PT}(g)$$

• if someone prefers g to g' then he will prefer kg to kg' for k > 0

• if
$$x, y \ge 0$$
, $V(-g) = -\lambda V(g)$

• if $x', y' \ge 0$ and someone prefers g to g' then he will prefer -g' to -g

2 How robust are the results?

- \bullet Very robust: loss aversion at the reference point, $\lambda>1$
- Medium robust: convexity of u for x < 0
- Slightly robust: underweighting and overweighting of probabilities $\pi\left(p\right)\gtrless p$

3 In applications we often use a simplified PT (prospect theory):

$$\pi\left(p\right)=p$$

 and

$$u(x) = x$$
 for $x \ge 0$
 $u(x) = \lambda x$ for $x \le 0$

4 Second order risk aversion of EU

- Consider a gamble σ and $-\sigma$ with 50 : 50 chances.
- Question: what risk premium Π would people pay to avoid the small risk σ ?
- We will show that as $\sigma \to 0$ this premium is $O(\sigma^2)$. This is called second order risk aversion.
- In fact we will show that for twice continuously differentiable utilities:

$$\Pi(\sigma) \cong \frac{\rho}{2}\sigma^2,$$

where ρ is the curvature of u at 0 that is $\rho = -\frac{u''}{u'}$.

• Let's generalize and consider an agent starting with wealth x. The agent takes the gamble iff:

$$B(\Pi) = \frac{1}{2}u(x + \Pi + \sigma) + \frac{1}{2}u(x + \Pi - \sigma) \ge u(x)$$

i.e. $\Pi \ge \Pi^*$ where:

 $B\left(\mathsf{\Pi}^{\ast}\right) =u\left(x\right)$

• Assume that u is twice differentiable and take the Taylor expansion of $B(\Pi)$ for small σ and Π :

$$u(x + \Pi + \sigma) = u(x) + u'(x)(\Pi + \sigma) + \frac{1}{2}u''(x)(\Pi + \sigma)^2 + o(\Pi + \sigma)^2$$

$$u(x + \Pi - \sigma) = u(x) + u'(x)(\Pi - \sigma) + \frac{1}{2}u''(x)(\Pi - \sigma)^{2} + o(\Pi - \sigma)^{2}$$

hence

$$B(\Pi) = u(x) + u'(x)\Pi + \frac{1}{2}u''(x)\left[\sigma^{2} + \Pi^{2}\right] + o\left(\sigma^{2} + \Pi^{2}\right)$$

Then use the definition $B(\Pi^*) = u(x)$ to get

$$\Pi^* = \frac{\rho}{2} \left[\sigma^2 + \Pi^{*2} \right] + o \left(\sigma^2 + \Pi^{*2} \right)$$

• to solve :
$$\Pi^* = rac{
ho}{2} \left[\sigma^2 + \Pi^{*2}
ight]$$
 for small σ , call $ho' =
ho/2$.

- Barbaric way:
 - find the roots of $\Pi^{*2} \frac{1}{\rho'}\Pi^* + \sigma^2 = 0.$

* compute the discriminant

$$\Delta = rac{1}{
ho'^2} - 4\sigma^2$$

* the roots are
$$\Pi^* = \frac{1}{2\rho'} \pm \frac{1}{2} \left(\frac{1}{\rho'^2} - 4\sigma^2 \right)^{\frac{1}{2}}$$
$$\Pi^* = \frac{1}{2\rho'} \pm \frac{1}{2} \left(\frac{1}{\rho'^2} - 4\sigma^2 \right)^{\frac{1}{2}}$$

* as when there is no risk, the risk premium should be 0, then the

relevant root is:

$$\Pi^* = \frac{1}{2\rho'} - \frac{1}{2} \left(\frac{1}{\rho'^2} - 4\sigma^2 \right)^{\frac{1}{2}}$$

– take the Taylor expansion for small σ

$$\Pi^* = \frac{1}{2\rho'} - \frac{1}{2\rho'} \left(1 - 4\rho'^2 \sigma^2\right)^{\frac{1}{2}}$$
$$= \frac{1}{2\rho'} - \frac{1}{2\rho'} \left(1 - \frac{1}{2} 4\rho'^2 \sigma^2 + o(\sigma^2)\right)$$
$$= \rho' \sigma^2$$

– then remember that ho'=
ho/2:

$$\Pi^* = \frac{\rho}{2} \sigma^2$$