14.16 STRATEGY AND INFORMATION FINAL ASSIGNMENT

Question 1

A seller uses the winner and loser pay auction to sell a good to one of $n \geq 2$ buyers. In this auction, buyers simultaneously submit bids and the highest bidder (ties are broken randomly) obtains the good. However, both the highest and the lowest bidder(s) pay their own bids. Assume that each buyer i has a private value v_{i}, which is independently and uniformly distributed in $[0,1]$.
(a) Find a symmetric Bayesian Nash equilibrium described by a strictly increasing bidding function (you do not have to argue that the identified strategies constitute an equilibrium).
(b) Prove that the bid of every buyer type v_{i} in the winner and loser pay auction does not exceed the bid of type v_{i} in the standard first-price auction. What buyer types bid exactly the same amount in the two auctions?
(c) Which of the two auction formats discussed in (b) generates a higher revenue for the seller?

Question 2

Consider the following signaling game.

(a) Find a Nash equilibrium that is not a sequential equilibrium.
(b) Find all sequential equilibria.

Question 3

Two players repeatedly play the following simultaneous move game for T periods. Assume that both players observe all past actions and discount payoffs by $\delta \in(0,1)$.

	C	D
	5,5	$-1,-2$
	$6,-1$	$0,-3$

(a) Find all subgame perfect equilibria of the game repeated for $T=2016$ periods.
(b) Assume now that $T=\infty$, so that the stage game is played an infinite number of times. For what values of δ does the following strategy profile, in which (A, C) is played along the equilibrium path at every date, constitute a subgame perfect equilibrium? Play starts in Phase I and evolves as follows.

- In Phase I, player 1 is supposed to choose action A and player 2 chooses C. If either player deviates from Phase I, play switches to Phase II.
- In Phase II, player 1 is supposed to play B and player 2 should play D for a single period. If both players comply with these strategies, play reverts to Phase I in the next period. Otherwise, play continues in Phase II. (Players are stuck in Phase II until (B, D) is observed.)

Question 4

Consider the following cooperative game between a capitalist c and a set of $n \geq 1$ workers W. The capitalist owns a factory and workers can contribute with labor. Workers cannot produce anything by themselves; together with the capitalist, any group of w workers can generate an amount of output that is worth $f(w)$, where $f:[0, \infty) \rightarrow[0, \infty)$ is a concave increasing function with $f(0)=0$. Formally, the set of players is $N=\{c\} \cup W$ and the value of a coalition $S \subseteq N$ is

$$
v(S)=\left\{\begin{array}{cl}
0 & \text { if } c \notin S \\
f(|S \cap W|) & \text { if } c \in S
\end{array} .\right.
$$

(a) Show that the core of this game is given by

$$
\mathcal{C}=\left\{x \in \mathbb{R}^{N} \mid 0 \leq x_{i} \leq f(n)-f(n-1), \forall i \in W \& \sum_{i \in N} x_{i}=f(n)\right\}
$$

Interpret the payoffs in this set. (Note: showing that the core coincides with the set \mathcal{C} proceeds in two steps. One needs to argue that (1) any core point satisfies the properties defining \mathcal{C}; and (2) any payoff vector in \mathcal{C} belongs to the core.)
(b) Find the Shapley value of this game.
(c) Are there any n and f satisfying the hypotheses such that the Shapley value does not belong to the core?

MIT OpenCourseWare
https://ocw.mit.edu

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

