
Bayesian Games and Auctions

Mihai Manea

MIT



Games of Incomplete Information

I Incomplete information: players are uncertain about the payoffs or
types of others

I Often a player’s type defined by his payoff function.
I More generally, types embody any private information relevant to

players’ decision making. . . may include a player’s beliefs about other
players’ payoffs, his beliefs about what other players believe his
beliefs are, and so on.

I Modeling incomplete information about higher order beliefs is
intractable. Assume that each player’s uncertainty is solely about
payoffs.
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Bayesian Game

A Bayesian game is a list B = (N,S,Θ, u, p) where
I N = {1, 2, . . . , n}: finite set of players
I Si : set of pure strategies of player i; S = S1 × . . . × Sn

I Θi : set of types of player i; Θ = Θ1 × . . . ×Θn

I ui : Θ × S → R is the payoff function of player i; u = (u1, . . . , un)

I p ∈ ∆(Θ): common prior

Often assume Θ is finite and marginal p(θi) is positive for each type θi .

Strategies of player i in B are mappings si : Θi → Si (measurable when Θi

is uncountable).
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First Price Auction

I One object is up for sale.
I Value θi of player i ∈ N for the object is uniformly distributed in

Θi = [0, 1], independently across players, i.e.,

p(θ θ̃i ≤ i ,∀i ∈ N) =
∏

θ̃i ,∀θi ,
∈N

∈ [0, 1] i
i

∈ N.

I Each player i submits a bid si ∈ Si = [0,∞).
I The player with the highest bid wins the object (ties broken randomly)

and pays his bid. Payoffs:

ui(θ, s) =

 θi−si |{j∈N|si=sj }|
if si ≥ sj ,∀j ∈ N

0 otherwise.
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An Exchange Game

I Player i = 1, 2 receives a ticket on which there is a number from a
finite set Θi ⊂ [0, 1]. . . prize player i may receive.

I The two prizes are independently distributed, with the value on i’s
ticket distributed according to Fi .

I Each player is asked independently and simultaneously whether he
wants to exchange his prize for the other player’s prize:
Si = {agree, disagree}.

I If both players agree then the prizes are exchanged; otherwise each
player receives his own prize. Payoffs:

ui(θ, s) =

θ 3−i if s1 = s2 = agreeθi otherwise.
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Ex-Ante Representation

In the ex ante representation G(B) of the Bayesian game B player i has
strategies (s Θi

i(θi))θi∈Θi ∈ Si —his strategies are functions from types to
strategies in B—and utility function Ui given by

Ui

(((
si(θi)

)
θi∈Θi

)
i∈N

)
= Ep(ui(θ, s1(θ1), . . . , sn(θn))).
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Interim Representation

The interim representation IG(B) of the Bayesian game B has player set
∪iΘi . The strategy space of player θi is Si . A strategy profile (sθi )i∈N,θi∈Θi

yields utility

Uθi ((sθi )i∈N,θi∈Θi ) = Ep(ui(θ, sθ1 , . . . , sθn )|θi)

for player θi . Need p(θi) > 0. . .
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Bayesian Nash Equilibrium

Definition 1
In a Bayesian game B = (N,S,Θ, u, p), a strategy profile s : Θ→ S is a
Bayesian Nash equilibrium (BNE) if it corresponds to a Nash equilibrium of
IG(B), i.e., for every i ∈ N, θi ∈ Θi

Ep(·|θi) [ui (θ, si (θi) , s−i (θ−i))] ≥ Ep(·|θi)

[
ui

(
θ, s′, s S−i (θ−i)

)]
,∀s′ ∈ i .i i

Interim rather than ex ante definition preferred since in models with a
continuum of types the ex ante game has many spurious equilibria that
differ on probability zero sets of types.
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Connections to the Complete Information Games

When i plays a best-response type by type, he also optimizes ex-ante
payoffs (for any probability distribution over Θi). Therefore, a BNE of B is
also a Nash equilibrium of the ex-ante game G (B).

BNE(B): Bayesian Nash equilibria of bayesian game B
NE(G): Nash equilibria of normal-form game G

Proposition 1
For any Bayesian game B with a common prior p,

BNE (B) ⊆ NE (G (B)) .

If p (θi) > 0 for all θi ∈ Θi and i ∈ N, then

BNE (B) = NE (G (B)) .
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Business Partnership

Two business partners work on a joint project.
I Each businessman i = 1, 2 can either exert effort (ei = 1) or shirk

(ei = 0).
I Each face the same fixed (commonly known) cost for effort c < 1.
I Project succeeds if at least one partner puts in effort, fails otherwise.
I Players differ in how much they care about the fate of the project: i

has a private, independently distributed type θi ∼ U[0, 1] and receives
payoff 2θi from success.

Hence player i gets 2θi − c from working, 2θi from shirking if opponent j
works, and 0 if both shirk.

e2 = 1 e2 = 0
e1 = 1 θ2

1 − c, θ2
2 − c θ2

1 − c, θ2
2

e1 = 0 2 2θ , θ1 2 − c 0, 0
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Equilibrium
e2 = 1 e2 = 0

e1 = 1 θ2
1 − c, θ2

2 − c θ2
1 − c, θ2

2
e1 = 0 2 2θ , θ1 2 − c 0, 0

pj : probability that j works—sufficient statistic for strategic situation faced
by player i

Working is rational for i if 2θi − c ≥ p 2 2
jθ (i ⇐⇒ 1 − pj)θi ≥ c. Thus i must

play a threshold strategy: work for

θi ≥ θi
∗ :=

√
c

.
1 − pj

Since pj = Prob(θj ≥ θ ) = θj
∗ 1 − j

∗, we get

θi
∗ =

√
c
θ∗j

=

√√ c√
c
θ∗i

= 4
√

cθ∗i ,

so θ∗i = 3√c. In equilibrium, i = 1, 2 works if θi
√

≥
3 c and shirks otherwise.
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Auctions

I single good up for sale
I n buyers bidding for the good
I buyer i has value Xi , i.i.d. with distribution F and continuous density

f = F ′; supp(F) = [0, ω]

I i knows only the realization xi of Xi
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Auction Formats

I First-price sealed-bid auction: each buyer submits a single bid (in a
sealed envelope) and the highest bidder obtains the good and pays
his bid. Equivalent to descending-price (Dutch) auctions.

I Second-price sealed-bid auction: each buyer submits a bid and the
highest bidder obtains the good and pays the second highest bid.
Equivalent to open ascending-price (English) auctions.

Bidding strategies: βi : [0, ω]→ [0,∞)

I What are the BNEs in the two auctions?
I Which auction generates higher revenue?
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Second-Price Auction

Each bidder i submits a bid bi , payoffs given byxi −maxj i bj if bi > maxj i bju ,
i =  ,0 if bi < maxj,i bj

Ties broken randomly.

Proposition 2
In a second-price auction, it is a weakly dominant strategy for every player
i to bid according to IIβ (i xi) = xi .
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Second-Price Auction Expected Payments

Y1 = maxi,1 Xi : highest value of player 1’s opponents, distributed
according to G with G(y) = F(y n) −1

Expected payment by a bidder with value x is

mII(x) = Prob[Win] × E[2nd highest bid | x is the highest bid]

= Prob[Win] × E[2nd highest value | x is the highest value]

= G(x) × E[Y1|Y1 < x]
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First-Price Auction

Each bidder i submits a bid bi , payoffs given by

xi bi if bi > maxju ,i bj
i =

 −

0 if bi < maxj,i bj

Ties broken randomly.


Clearly, not optimal/equilibrium to bid own value. Trade-off: higher bids
increase the probability of winning but decrease the gains.

Symmetric equilibrium: βi = β for all buyers i. Assume β strictly increasing,
differentiable.
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Optimal Bidding

Suppose bidder 1 has value X1 = x and considers bidding b. Clearly,
b ≤ β(ω) and β(0) = 0.

Bidder 1 wins the auction if maxi,1 β(Xi) < b. Since β is s. increasing,
maxi,1 β(X 1

i) = β(maxi,1 Xi) = β(Y1), so 1 wins if Y1 < β
− (b). His

expected payoff is
G(β−1(b)) × (x − b).

G′(β−1(b))
FOC : − 1(x b) − G(β− (b)) = 0

β′(β−1(b))

b = β(x)⇒ G(x)β′(x) + G′(x)β(x) = xg(x) ⇐⇒ (G(x)β(x))′ = xg(x)

1
β(0) = 0⇒ β(x) =

x

G(x)

∫
yg(y)dy

0

= E[Y1|Y1 < x].
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Equilibrium

Proposition 3
The strategies

Iβ (x) = E[Y1|Y1 < x]

constitute a symmetric BNE in the first-price auction.
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Proof
We only checked necessary conditions for equilibrium. . . Check that if all
bidders follow strategy Iβ then it is optimal for bidder 1 to follow it. Since Iβ

is increasing and continuous, it cannot be optimal to bid higher than Iβ (ω).
Suppose bidder 1 with value x bids b ∈ [0 I, β (ω)]. ∃z I, β (z) = b. Since
bidder 1 wins if Y1 < z, his payoffs are

Π(b , x I) = G(z)[x − β (z)]

= G(z)x − G(z)E[Y1|Y1 < z]
z

= G(z)x −
∫

yg(y)dy
0

z

= G(z)x − G(z)z +

∫
G(y)dy

0
z

= G(z)(x − z) +

∫
G(y)dy.

0

Then
z

IΠ(β (x), x) − IΠ(β (z), x) = G(z)(z − x) −

∫
G(y)dy

x
≥ 0.
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Shading

I 1
β (x) =

x

G(x)

∫
yg(y)dy

0

= x −
∫ x G(y)

0 G(x)
dy

= x −
∫ x

0

[
F(y) n

F(x)

] −1

dy

Shading, the amount by which the bid is lower than the value, is∫ x

0

[
F(y) n

F(x)

] −1

dy.

Depends on n, converges to 0 as n → ∞ (competition).
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Example with Uniformly Distributed Values

If F(x) = x for x ∈ [0 n 1, 1], then G(x) = x − and

I n 1
β (x) =

−

n
x.
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Example with Exponentially Distributed Values

If n = 2 and F(x) = 1 − exp(−λx) for x ∈ [0,∞) (λ > 0) then

I )
β (x) = x

∫ x F(y
−

0 F(x)
dy

=
1
λ
−

x exp(−λx)

1 − exp(−λx)

Note that E[X ] = 1/λ.

Take λ = 1. A bidder with value $106 will not bid more than $1. Why?
Such a bidder has a lot to lose by not bidding higher but the probability of
losing is small, exp(−106).

More generally, for n = 2,

Iβ (x) = E[Y1|Y1 < x] ≤ E[Y1] = E[X2].
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Revenue Comparison

Expected payment in the first-price auction by a bidder with value x is

mI(x) = Prob[Win] × Amount bid = G(x) × E[Y1|Y1 < x]

Recall that
mII(x) = G(x) × E[Y1|Y1 < x],

so both auctions yield the same revenue. Special case of the revenue
equivalence theorem.
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Mechanism Design

An auction is one of many mechanisms a seller can use to sell the good.
The price is determined by the competition among buyers according to the
rules set out by the seller—the auction format.

The seller could use other methods
I post different prices for each bidder, choose a winner at random
I ask various subsets of bidders to pay their own or others’ bids

Options virtually unlimited. . .

Myerson (1981): What is the optimal mechanism?
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Framework

I single good up for sale, worth 0 to the seller
I buyers: 1, 2, . . . , n
I buyers have private values, independently distributed
I buyer i’s value Xi distributed according to Fi

I supp(Fi) = [0, ωi] = Xi , density fi = Fi
′

I i knows only the realization xi of Xi

I X =
∏n

i=1X∏ i
nI f(x) = i=1 fi(xi)

I f x f x−i( −i) =
∏

j,i j( j)
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Mechanisms

A selling mechanism (B , π, µ)

I Bi : set of messages (bids) for buyer i
I allocation rule π : B → ∆(N)

I payment rule µ : B → Rn

The allocation rule determines, as a function of all n messages b, the
probability πi(b) that i gets the object. Similarly the payment rule specifies
a payment µi(b) for each buyer i.

Describe first- and second-price auctions as mechanisms. . .

Every mechanism induces a game of incomplete information with
strategies βi : Xi → Bi .
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Direct Mechanisms

Mechanisms can be complicated, no assumptions on the messages Bi .

Direct mechanism (Q ,M)

I Bi = Xi , every buyer is asked to directly report a value
I Q : X → ∆(N) and M : X → Rn

I Qi(x): probability that i gets the object
I Mi(x): payment by i

If βi : Xi → Xi with βi(xi) = xi constitutes a BNE of the induced game then
we say that the direct mechanism has a truthful equilibrium or is incentive
compatible.
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The Revelation Principle

Proposition 4
Given a mechanism and an equilibrium for that mechanism, there exists a
direct mechanism in which (i) it is an equilibrium for each buyer to report
his or her value truthfully and (ii) the outcomes are the same as in the
given equilibrium of the original mechanism for every type realization x.

Consider a mechanism (B , π, µ) with an equilibrium β. Define
Q : X → ∆(N) and M : X → RN as follows: Q(x) = π(β(x)) and
M(x) = µ(β(x)). The direct mechanism (Q ,M) asks players to report
types and does the “equilibrium computation” for them.

(ii) holds by construction.

To verify (i): if buyer i finds it profitable to report zi instead of his true value
xi in the direct mechanism (Q ,M), then i prefers the message βi(zi)
instead of βi(xi) in the original mechanism.
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Incentive Compatibility
For a direct mechanism (Q ,M), define

qi(zi) =

∫
Qi(zi , x i)f i(x i

X i

− − − )dx−i
−

mi(zi) =

∫
Mi(zi , x i)f i

X−i

− − (x−i)dx−i

Expected payoff of buyer i with value xi who reports zi if other buyers
report truthfully

qi(zi)xi −mi(zi)

(Q ,M) is incentive compatible (IC) if

Ui(xi) ≡ qi(xi)xi −mi(xi) ≥ qi(zi)xi −mi(zi),∀i, xi , zi

Ui is convex because

Ui(xi) = max{qi(zi)xi −mi(zi) | zi ∈ Xi}.
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Payoff Formula
Since

qi(xi)zi −mi(xi) = qi(xi)xi −mi(xi) + qi(xi)(zi − xi)

= Ui(xi) + qi(xi)(zi − xi),

IC requires that
Ui(zi) ≥ Ui(xi) + qi(xi)(zi − xi).

Hence
qi(zi)(zi − xi) ≥ Ui(zi) − Ui(xi) ≥ qi(xi)(zi − xi).

For zi > xi ,
U

qi(zi) ≥
i(zi) − Ui(xi)

)
z

≥ q x
i − x i( i ,

i

so qi is increasing. Since Ui is convex, it is differentiable almost
everywhere,

U (i
′ xi) = qi(xi) ∫ xi

Ui(xi) = Ui(0) + qi(ti)dti
0
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Monotonicity Condition

IC implies monotonicity of qi .

Conversely, a mechanism where Ui satisfies

xi

Ui(xi) = Ui(0) +

∫
qi(ti)dti

0

with qi increasing must be incentive compatible. IC condition

Ui(zi) − Ui(xi) ≥ qi(xi)(zi − xi)

boils down to ∫ zi

qi(ti)dti
xi

≥ qi(xi)(zi − xi).
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Revenue Equivalence

Ui(xi) = Ui(0) +

∫ xi

qi(ti)dti
0

Theorem 1
If the direct mechanism (Q,M) is incentive compatible, then for all i and xi ,

xi

mi(xi) = mi(0) + qi(xi)xi −

∫
qi(ti)dti .

0

The expected payments in any two incentive compatible mechanisms with
the same allocation rule are equivalent up to a constant.

xi

Ui(xi) = qi(xi)xi −mi(xi) = Ui(0) +

∫
qi(ti)dti

0
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First-Price Auction Revisited

n symmetric buyers

Assuming a symmetric monotone equilibrium β in first-price auction, the
highest value buyer obtains the good. Same allocation Q as in the
equilibrium of the second-price auction. Buyers with value 0 bid 0, so
Ui(0) = 0 in both auctions. By Theorem 1,

mI(x) = mII(x).

Since

mI(x) = G(x) × β(x)

mII(x) = G(x) × E[Y1|Y1 < x],

we obtain β(x) = E[Y1|Y1 < x].
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All-Pay Auction
n symmetric buyers. Highest bidder receives the good, but all buyers have
to pay their bid (as in lobbying).

Assuming a symmetric monotone equilibrium β in the all-pay auction, the
highest value buyer obtains the good. Same allocation Q as in the
equilibrium of the second-price auction. Buyers with value 0 bid 0, so
Ui(0) = 0 in both auctions. By Theorem 1,

mall−pay II(x) = m (x) = G(x) × E[Y1|Y1 < x].

Since mall−pay(x) = β(x),

β(x) = G(x) × E[Y1|Y1 < x].

Underbidding compared to first- and second-price auctions.

Can use revenue equivalence with the second-price auction to derive
equilibrium in any auction where we expect efficient allocation.
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Individual Rationality

A mechanism is individually rational (IR) if Ui(xi) ≥ 0 for all xi ∈ Xi .

xi

Ui(xi) = Ui(0) +

∫
qi(ti)dti

0
≥ 0,∀xi ∈ Xi ⇐⇒ Ui(0) = −mi(0) ≥ 0
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Expected Revenue
In a direct mechanism (Q ,M), the expected revenue of the seller is

n

E[R] =
∑

E[mi(Xi)].
i=1

Substitute the form

E[mi(Xi)] =

∫ula for mi ,
ωi

mi(xi)fi(xi)dxi
0

= mi(0) +

∫ ωi ωi xi

qi(xi)xi fi(xi)dxi qi(ti)fi(xi)dtidxi .
0

−

∫
0

∫
0

Interchanging the order of integration,∫ ωi
∫ xi ωi ωi ωi

qi(ti)fi(xi)dtidxi =

∫ ∫
qi(ti)fi(xi)dxidti =

∫
(1−Fi(ti))qi(ti)dti

0 0 0 ti 0
ωi 1 Fi(xi)E[mi(Xi)] = mi(0) +

∫ (
xi

−

0
− qi(xi)fi(xi)dxi∫ ( fi(xi)

1 − Fi(xi)

)
= mi(0) + xi

X
−

fi(xi)

)
Qi(x)f(x)dx
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Optimal Mechanism

The seller’s objective is to maximize revenue,

∑n ∫ ∑n (
1 − Fi(xi)mi(0) + xi

Xi=1 i=1

− Q f
i(xi)

)
i(x) (x)dx

f

subject to IC and IR. IC is equivalent to qi being increasing for every i and
IR to mi(0) ≤ 0. Clearly, need to set mi(0) = 0.

Maximize∫ ∑n 1 Fi(xi)
ψi(xi)Qi(x)f(x)dx where ψi(xi) := xi

−

X i=1

−
fi(xi)

subject to qi being increasing for every i.

ψi(xi): virtual value of player i with type xi

Regularity condition: assume ψi is s. increasing for every i
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Optimal Solution
Ignoring the qi monotonicity condition, maximize for every x∑n

ψi(xi)Qi(x).
i=1

Set
Qi(x) > 0 ⇐⇒ ψi(xi) = maxψj(xj) .

∈N
≥ 0

j

x
To obtain mi(xi) = mi(0) + qi(xi)x

i
i −

∫
qi(ti)dti , define0

Mi(x) = Qi(x)xi −

∫ xi

Qi(zi , x
0

−i)dzi .

(Q ,M) is an optimal mechanism. Only need to check implied qi is
increasing. If zi < xi , regularity implies ψi(zi) < ψi(xi), which means that
Qi(zi , x−i) ≤ Qi(xi , x−i).

E[R] = E[max(ψ1(X1), ψ2(X2), ..., ψn(Xn), 0)]
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Optimal Auction
Smallest value needed for i to win against opponent types x−i :

yi(x−i) = inf{zi : ψi(zi) ≥ 0 and ψi(zi) ≥ ψj(xj),∀j , i}

In the optimal mechanism,

(
Qi(zi , x i) =

1 if z x i > yi −i)
−  .

0 if zi < yi(x−i)

Then

xi xi

Mi(x) = Qi(x)xi −

∫
Qi(zi , x−i)dzi =

∫
(Qi(xi , x i) Qi(zi , x i))dzi

0 0
− − −yi(x i if− ) Qi(x) = 1

= .
0 if Qi(x) = 0

The player with the highest positive virtual v


alue wins. Only the winning

player has to pay and he pays the smallest amount needed to win.
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Symmetric Case
Suppose Fi = F , so ψi = ψ and

yi(x i) = max
(
ψ−1(0 max− ), xj

j,i

)
In the optimal mechanism,

1 if zi > yi(x i)Qi(zi , x−i) =  −

0 if zi < yi(x−i)

and yi(x


i) if Q

Mi(x) =  − i(x) = 1 .
0 if Qi(x) = 0

Proposition 5
Suppose the design problem is regular and symmetric. Then the
second-price auction with a reserve price r∗ = ψ−1(0) is an optimal
mechanism.
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Intuition for Virtual Values
Why is it optimal to allocate the object based on virtual values?

Consider a single buyer whose value is distributed according to F . The
seller sets price p to maximize p(1 − F(p)),

FOC : 1 − F(p) − pf(p) = 0 ⇐⇒ ψ(p) = 0.

Alternatively, setting the probability (or quantity) of purchase q = 1 − F(p),
seller obtains price p(q) = F−1(1 − q). The revenue function is

R(q) = q × p(q) = qF−1(1 − q)

with
q

R ′(q) F−1= (1 − q) − .
F ′(F−1(1 − q))

Substituting p = F−1(1 − q),

1
R ′(q) = p

− F(p)
− = ψ(p).

f(p)

The seller sets the monopoly price p where marginal revenue ψ(p) is 0,
i.e., p = ψ−1(0).
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Optimal Auction and Virtual Values

When facing multiple buyers, the optimal mechanism calls for the seller to
set a discriminatory reserve price r∗ −1= ψ (i i 0) for each buyer i. If xi < ri

∗

for every buyer i, the seller keeps the object. Otherwise, the object is
allocated to the buyer generating the highest marginal revenue. The
winning buyer pays pi = yi(x−i), the smallest value needed to win.

Optimal auction is inefficient: with positive probability, the object is not
allocated to a buyer even though it is worth 0 to the seller and has positive
values for buyers.
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Optimal Auction Favors Weak Buyers

Two buyers with regular cdf’s F1 and F2 s.t. supp F1 = supp F2 = [0, ω]
and

f1(x)

1 − F1(x)
<

f2(x)
, x

1 − F2(x)
∀ ∈ [0, ω].

Buyer 2 is relatively disadvantaged because his value is likely to be lower.
F1 first-oder stochastically dominates F2, i.e., F2(x) ≥ F1(x) for x ∈ [0, ω].
Check this by integrating the inequality above for x ∈ [0, z] to obtain
− log(1 − F1(z)) ≤ − log(1 − F2(z)).

Reserve prices r1
∗ and r2

∗ satisfy

1 − F1(r∗)
−

1ψ2(r ) = 0 = ψ2
∗

1(r1
∗) = r1

∗

f1(r∗1)
< r∗1 −

1 − F2(r∗1)
= ψ

f2(r1
∗ 2(r1

∗).
)

Then ψ2(r )2
∗ < ψ2(r1

∗) implies r2
∗ < r1

∗.
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More on Discrimination and Inefficiency

When both buyers have the same value x > r1
∗, buyer 2 obtains the good in

the optimal mechanism because

1 )
0 < ψ1 x) = x

− F
−

1(x
(

f1(x)
< x −

1 − F2(x)
= ψ2(x).

f2(x)

For small ε > 0, ψ1(x) < ψ2(x − ε) so buyer 2 gets the good even if
x2 = x − ε when x1 = x.

Second type of inefficiency: object not allocated to the highest value buyer
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Application to Bilateral Trade

Myerson and Satterthwaite (1983)
I seller with privately known cost C; cdf Fs , density fs > 0, supp [c, c]

I buyer with privately known value V ; cdf Fb , density fb > 0, supp [v , v]

I c < v < c < v

A direct mechanism (Q ,M) specifies the probability of trade Q(c, v) and
the transfer M(c, v) from the buyer to the seller for every reported profile
(c, v).

Is there any efficient mechanism (Q(c, v) = 1 if c < v and Q(c, v) = 0 if
c > v) that is individually rational and incentive compatible?
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More General Mechanisms

Useful to allow for mechanisms (Q ,Ms ,Mb) where Ms denotes the transfer
to the seller and Mb the transfer from the buyer. (Q ,M) special case with
Mb = Ms .

Alternative question: is there an efficient mechanism (Q ,Ms ,Mb) that is
individually rational and incentive compatible, which does not run a budget
deficit, i.e., ∫ c

c

∫ v

v
(Mb(c, v) −Ms(c, v))fb(v)fs(c)dvdc ≥ 0?

If the answer is negative, then the answer to the initial question is negative.
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Revenue Equivalence

qb(v) =

∫ c

c
Q(c, v)fs(c)dc & mb(v) =

∫ c

c
Mb(c, v)fs(c)dc

Incentive compatibility for the buyer requires

Ub(v) ≡ qb(v)v −mb(v) ≥ qb(v′)v −mb(v′),∀v′ ∈ [v , v].

As before,

Ub(v) = Ub(v) +

∫ v

v
qb(v′)dv′,

which implies that mb(v) = −Ub(v) + f(v ,Q).

Similarly, Us(c) = ms(c) − qs(c)c = Us(c) +
∫ c

c qs(c′)dc′ and
ms(c) = Us(c) + g(c,Q).

For every incentive compatible mechanism (Q ,Ms ,Mb),∫ c

c

∫ v

v
(Mb(c, v) −Ms(c, v))fb(v)fs(c)dvdc = −Ub(v) − Us(c) + h(Q).

Mihai Manea (MIT) Bayesian Games and Auctions February 22, 2016 47 / 49



The Vickrey-Clarke-Groves (VCG) Mechanism
Fix efficient allocation Q and consider the following payments. If v > c
then set Mb(c, v) = max(c, v) and Ms(c, v) = min(v , c). Otherwise,
Mb(c, v) = Ms(c, v) = 0.

(Q ,Ms ,Mb) is incentive compatible (similar argument to the second-price
auction with reserve).

Since Ub(v) = Us(c) = 0,

h(Q) =

∫ c

c

∫ v

v
(Mb(c, v) −Ms(c, v))fb(v)fs(c)dvdc

=

∫ c

c

∫ v

(max(c, v
c

) −min(v , c))fb(v)fs(c)dvdc

=

∫ c

c

∫ v

c
(max(c, v) + max(−v ,−c))fb(v)fs(c)dvdc

=

∫ c

c

∫ v

(max(c
c

− v , v − v , c − c, v − c))fb(v)fs(c)dvdc < 0.
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Negative Result

Suppose (Q ,Ms ,Mb) is an efficient mechanism that is individually rational
and incentive compatible.

In light of the VCG mechanism, efficiency and incentive compatibility imply
h(Q) < 0. Individual rationality requires Ub(v),Us(c) ≥ 0. Then∫ c

c

∫ v

v
(Mb(c, v)−Ms(c, v))fb(v)fs(c)dvdc = −Ub(v)−Us(c) + h(Q) < 0.

Every efficient, individually rational, and incentive compatible mechanism
must run a budget deficit.

Theorem 2
If c < v < c < v, there exists no efficient bilateral trade mechanism
(Q ,Mb ,Ms) with Mb = Ms that is individually rational and incentive
compatible.
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