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Coalitional Games
A coalitional (or cooperative) game is a model that focuses on the behavior
of groups of players. The strategic interaction is not explicitly modeled as
in the case of non-cooperative games.
I N: finite set of players
I a coalition is any group of players, S ⊆ N (N is the grand
coalition)

I v(S) ≥ 0: worth of coalition S
I S can divide v(S) among its members; S may implement any payoffs

(xi)i with∈S
∑

i∈S xi = v(S) (no externalities)
I outcome: a partition (Sk ) allocationk=1,...,k̄ of N and an (xi)i∈N

specifying the division of the worth of each Sk among its members,

k̄

Sj ∩ Sk = ∅,∀j , k & Sk = N∑ k

⋃
=1

xi = v(Sk ),
i∈S

∀k ∈ {1, . . . , k̄ }
k
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Examples
A majority game
I Three parties (players 1,2, and 3) can share a unit of total surplus.
I Any majority—coalition of 2 or 3 parties—may control the allocation of

output.
I Output is shared among the members of the winning coalition.

v({1}) = v({2}) = v({3}) = 0

v({1, 2}) = v({1, 3}) = v({2, 3}) = v({1, 2, 3}) = 1

Firm and workers
I A firm, player 0, may hire from the pool of workers {1, 2, . . . , n}.
I Profit from hiring k workers is f(k).f(|S | − 1) if 0

v(S) =  ∈ S0 otherwise
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The Core
Suppose that it is efficient for the grand coalition to form:

k̄

v(N) ≥
∑

v(Sk ) for every partition (Sk )k=1,...,k̄ of N.
k=1

Which allocations (xi)i∈N can the grand coalition choose? No coalition S
should want to break away from (xi)i N and implement a division of v∈ (S)
that all its members prefer to (xi)i∈N.

For an allocation (xi)i , use notation x x . Allocation x is∈N S =
∑

i∈S i ( i)i∈N

feasible for the grand coalition if xN = v(N).

Definition 1
Coalition S can block the allocation (xi)i∈N if xS < v(S). An allocation is in
the core of the game if (1) it is feasible for the grand coalition; and (2) it
cannot be blocked by any coalition. C denotes the set of core allocations,

C =
{
(xi)i∈N

∣∣∣xN = v(N) & xS ≥ v(S),∀S ⊆ N
}
.

Mihai Manea (MIT) Cooperative Games April 25, 2016 4 / 32



Examples
I Two players split $1, with outside options p and q

v({1}) = p, v({2}) = q, v({1, 2}) = 1

C = {(x1, x2)|x1 + x2 = 1, x1 ≥ p, x2 ≥ q}

What happens for p = q = 0? What if p + q > 1?
I The majority game

v({1}) = v({2}) = v({3}) = 0

v({1, 2}) = v({1, 3}) = v({2, 3}) = v({1, 2, 3}) = 1

C =?

I A set A of 1000 sellers interacts with a set B of 1001 buyers in a
market for an indivisible good. Each seller supplies one unit of the
good and has reservation value 0. Every buyer demands a single unit
and has reservation price 1.

v(S) = min(|S ∩ A |, |S ∩ B |)

C =?
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Balancedness

Which games have nonempty core?

A vector (λS ≥ 0)S⊆N is balanced if∑
λS = 1,

S N i S

∀i ∈ N.
{ ⊆ | ∈ }

A payoff function v is balanced if∑
λSv(S)

S⊆N

≤ v(N) for every balanced λ.

Interpretation: each player has a unit of time, which can be distributed
among his coalitions. If each member of coalition S is active in S for λS

time, a payoff of λSv(S) is generated. A game is balanced if there is no
allocation of time across coalitions that yields a total value > v(N).
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Balancedness is Necessary for a Nonempty Core

Suppose that C , ∅ and consider x ∈ C. If (λS)S⊆N is balanced, then∑
λSv(S) ≤

∑
λSxS = i

⊆N S⊆N

∑
x

S i∈N

∑
λS =

S3i

∑
xi = v(N).

i∈N

Hence v is balanced.

Balancedness turns out to be also a sufficient condition for the
non-emptiness of the core. . .
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Nonempty Core

Theorem 1 (Bondareva 1963; Shapley 1967)
A coalitional game has non-empty core iff it is balanced.
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Proof
Consider the linear program

X := min
∑

xi
i∈N

s.t.
∑

xi ≥ v(S),∀S ⊆ N.
i∈S

C , ∅ ⇐⇒ X ≤ v(N) (1)

Dual program

Y := max
S

∑
λSv(S)

⊆N

s.t. λS ≥ 0,∀S ⊆ N &
∑

λS = 1,∀i N
S3i

∈ .

v is balanced ⇐⇒ Y ≤ v(N) (2)

The primal linear program has an optimal solution. By the duality theorem
of linear programming, X = Y (3).

(1)-(3): C , ∅ ⇐⇒ v is balanced
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Simple Sufficient Condition for Nonempty Cores

Definition 2
A game v is convex if for any pair of coalitions S and T ,

v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T).

Convexity implies that the marginal contribution of a player i to a coalition
increases as the coalition expands,

S ⊂ T & i < T =⇒ v(T ∪ {i}) − v(T) ≥ v(S ∪ {i}) − v(S).

Indeed, if v is convex then

v((S ∪ {i}) ∪ T) + v((S ∪ {i}) ∩ T) ≥ v(S ∪ {i}) + v(T),

which can be rewritten as

v(T ∪ {i}) − v(T) ≥ v(S ∪ {i}) − v(S).
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Convex Games Have Nonempty Cores

Theorem 2
Every convex game has a non-empty core.

Define the allocation x with xi = v({1, . . . , i}) − v({1, . . . , i − 1}). Prove that
x ∈ C. For all i1 < i2 < · · · < ik ,

∑k

xij =
j=1

∑k

v( 1, . . . , ij 1, ij ) v( 1, . . . , ij 1 )
j=1

{ − } − { − }

k

≥
∑

v({i1, . . . , ij 1, ij}) − v i− (
j=1

{ 1, . . . , ij−1})

= v({i1, i2, . . . , ik }),

where the inequality follows from {i1, . . . , ij−1} ⊆ {1, . . . , ij − 1} and v ’s
convexity.
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Core Tatonnementˆ
Consider a game v with C , ∅.
I e(S; x) = v(S) − xS : excess of coalition S at allocation x
I D(x) ⊆ 2N: most discontent coalitions at x,

D(x) = arg max w(S)e(S; x)
S∈N

where w : 2N → (0,∞) describes coalitions’ relative ability of
expressing discontent and threatening to block

For any feasible allocation x0, consider the following recursive process.
For t = 1, 2, . . .
I if x t−1 ∈ C, then x t = x t−1;

t 1 t 1 t 1I otherwise, one coalition S − D(x − ) most discontent with x − is
chosen and e S t 1

∈
− x t−1 is transferred symmetrically from N \ S t−1( ; ) to

S t−1,
t 1 e −1(S t 1;x t− )

+
x t

i


x

=
 i
− |S t−1 |

if i ∈ S t−1

x t−1
i −

e(S t−1;x t−1)

|N\S t−1 |
if i ∈ N \ S t−1

.
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Core Convergence Result

Theorem 3
The sequence (x t ) converges to a core allocation.

For intuition, view allocations x as elements of RN.

x tI ( ) is confined to the hyperplane {x |xN = v(N)}.
I Assume that (x t ) does not enter C.
I At each step t , the reallocation is done such that x t+1 is the projection

of x t on the hyperplane FS t , where FS = {x |xS = v(S) & xN = v(N)}.
I Distance from x t to FS t is proportional to e(S t ; x t ).
I For any fixed c ∈ C, since x t and c are on different sides of the

hyperplane FS t and the line x tx t+1 is perpendicular to FS t , we have
x t̂x t+1c > π/2 and d(x t , c)

t

≥ d t(x +1, c) for all t ≥ 0.
I lc := limt d→∞ (x , c)
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Continuation of Proof Sketch

I For any limit point x of (xt ), there exists a subsequence of (xt )
converging to x and a coalition S such that S t = S along the
subsequence.

I The projection of the subsequence on FS converges to the projection
y of x on S ⇒ y is also a limit point.

I If x < FS (x , y), then for any c ∈ C the segment xc is longer than yc
because xyc > π/2. This contradicts d(x, c) = d(y, c) = lc .

I Thereforê, x ∈ FS and e(S; x) = 0. Then x ∈ C since, by continuity, S
is one of the most discontent coalitions under x ⇒ lx = 0.

I Any other limit point z satisfies d(z, x) = lx = 0, so z = x.
I (xt ) converges to x ∈ C.
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Singleton Solution Concepts

Two players split $1, with outside options p and q

v({1}) = p, v({2}) = q, v({1, 2}) = 1

C = {(x1, x2)|x1 + x2 = 1, x1 ≥ p, x2 ≥ q}

What happens for p = q = 0? What if p + q > 1?

The core may be empty or quite large, which compromises its role as a
predictive theory. Ideally, select a unique outcome for every cooperative
game.

A value for cooperative games is a function from the space of games
(N, v) to feasible allocations x (xN = v(N)).
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The Shapley Value
Shapley (1953) proposed a solution with many economically desirable and
mathematically elegant properties.

Definition 3
The Shapley value of a game with worth function v is given by

S !( N S 1)!
ϕi(v) =

|

S

∑ | | | − | | −

⊆N\{i}

(v(S ∪ {i}) − v(S)).
|N|!

Interpretation: players are randomly ordered in a line, all orders being
equally likely. ϕi(v) represents the expected value of player i’s contribution
to the coalition formed by the players preceding him in line.

Why do values sum to v(N)?

What’s the Shapley value in the divide the dollar game?

Proposition 2⇒ for convex games v, ϕ(v) is a convex combination of core
allocations. Since C is convex, ϕ(v) ∈ C. Not true in general.
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Axioms
What is special about the Shapley value?

Axiom 1 (Symmetry)
Players i and j are interchangeable in v if v(S ∪ {i}) = v(S ∪ {j}) for all
S disjoint from {i, j}. If i and j are interchangeable in v then ϕi(v) = ϕj(v).

Axiom 2 (Dummy Player)
Player i is a dummy in v if v(S ∪ {i}) = v(S) for all S. If i is a dummy in v
then ϕi(v) = 0.

Axiom 3 (Additivity)
For any two games v and w, we have ϕ(v + w) = ϕ(v) + ϕ(w).

Theorem 4
A value satisfies the three axioms iff it is the Shapley value.
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Proof of “If” Part
The only axiom not checked immediately is symmetry. Suppose that i and
j are interchangeable. Then

S
ϕi(v) =

S⊆

∑ | |!(|N| − |S | − 1)!

N\{i}

(v(S i
N|!

∪ { }) − v(S))
|

=
∑ |S |!(|N| − |S | − 1)!

S⊆N\{i,j}

(v(S )
N|!

∪ {i} − v(S))
|

( S + 1)!( N ( S + 1) 1)!
+

∑ | | | | − | | −

S⊆N\{i,j}

(v(S j
N|!

∪ {i, }) − v(S ∪ {j}))
|

S !( N S 1)!
=

|

S

∑ | | | − | | −

⊆N\{i,j}

(v(S )
N|!

∪ {j} − v(S))
|

( S + 1)!( N ( S + 1) 1)!
+

∑ | | | | − | | −

S⊆N\{i,j}
|N|!

(v(S ∪ {i, j}) − v(S ∪ {i}))

= ϕj(v).
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Proof of “Only If” Part

Suppose that ψ satisfies the three axioms. We argue that ψ = ϕ.

For any non-empty coalition T , define the game

T 1 if S
v (S) =

⊇ T
.

0 otherwise

Fix a ∈ R. By the symmetry axiom,


ψi(avT ) = ψj(avT ) for all i, j ∈ T . By

the dummy player axiom, ψi(avT ) = 0 for all i < T . Hence

a/ T if i T
ψi(avT ) =

 | | ∈ ,
0 otherwise

so ψ(avT ) = ϕ(avT ).
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Proof of “Only If” Part

The (2|N| − 1) games vT span the linear space of all games. If we view
games as (2|N| − 1)-dimensional vectors, it is sufficient to show that the
vectors corresponding to the games T(v ) are linearly independent.

For a contradiction, suppose that T
T N α vT = 0 with not all α’s equal to⊆

z∑ero. Let S be a set with minimal cardinality satisfying Sα , 0. Then
T

T S S
N α vT ( ) = α , 0, a contradiction.

∑
⊆

Thus any v can be written as v =
∑ T T

T N α v . The additivity of ψ and ϕ⊆

imply

ψ(v) = ψ

∑ Tα vT

T⊆N

 ∑  T= vT vTψ(α ) =
∑

T T Tϕ(α ) = ϕ α v = ϕ(v).
T⊆N T⊆N


T

∑
⊆N
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An Alternative Characterization

Equity requirement: for any pair of players, the amounts that each player
gains or loses from the other’s withdrawal from the game are equal. For a
game (N, v), we denote by v |M its restriction to the players in M.

Definition 4
A value ψ has balanced contributions if for every game (N, v) we have

ψi(v |N) − ψi(v |N \ {j}) = ψj(v |N) − ψj(v |N \ {i}),∀i, j ∈ N.

Theorem 5
The unique value that has balanced contributions is the Shapley value.
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Proof
At most one value has balanced contributions.
I For a contradiction, let ϕ′ and ϕ′′ be two different such values.
I Let (N, v) be a game with minimal |N| for which the two values yield

different outcomes.
I Then for all i, j ∈ N, ϕ′(i v |N \ {j}) = ϕ′′(i v |N \ {j}) and
ϕ′j (v |N \ {i}) = ϕ′′(j v |N \ {i}), along with the balancedness of ϕ′ and
ϕ′′, imply ϕ′(v |N) − ϕ′′(v |N) = ϕ′(v |N) − ϕ (i i j

′′
j v |N).

I Since i N(ϕ′i (v∈ |N) − ϕ′′(i v |N)) = 0, we obtain
ϕi
′(v |N

∑
) − ϕ′′(i v |N) = 0,∀i ∈ N, or ϕ′(v |N) = ϕ′′(v |N), a contradiction.

Next argue that the Shapley value has balanced contributions.
I The Shapley value ϕ is a linear function of the game, so the set of

games for which ϕ satisfies balanced contributions is closed under
linear combinations.

I Since any game is a linear combination of games vT , it is sufficient to
show that these games satisfy balanced contributions. . .
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The Bargaining Problem

The non-cooperative approach involves explicitly modeling the bargaining
process as an extensive form game (e.g., Rubinstein’s (1982) alternating
offer bargaining model).

The axiomatic approach abstracts away from the details of the bargaining
process. Determine directly “reasonable” or “natural” properties that
outcomes should satisfy.

What are “reasonable” axioms?
I Consider a situation where two players must split $1. If no agreement

is reached, then the players receive nothing.
I If preferences over monetary prizes are identical, then we expect that

each player obtains 50 cents.
I Desirable properties: efficiency and symmetry of the allocation for

identical preferences.
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Nash Bargaining Solution

A bargaining problem is a pair (U, d) where U ⊂ R2 and d ∈ U.
I U is convex and compact
I there exists some u ∈ U such that u > d

Denote the set of all possible bargaining problems by B. A bargaining
2solution is a function f : B → R with f(U, d) ∈ U.

Definition 5
The Nash (1950) bargaining solution fN is defined by

{fN(U, d)} = arg max(u1 − d1)(u2 − d2).
u∈U,u≥d

Given the assumptions on (U, d), the solution to the optimization problem
exists and is unique.

Mihai Manea (MIT) Cooperative Games April 25, 2016 24 / 32



Axioms

Axiom 4 (Pareto Efficiency)
A bargaining solution f is Pareto efficient if for any bargaining problem
(U, d), there does not exist (u1, u2) ∈ U such that u1 ≥ f1(U, d) and
u2 ≥ f2(U, d), with at least one strict inequality.

Axiom 5 (Symmetry)
A bargaining solution f is symmetric if for any symmetric bargaining
problem (U, d) ((u1, u2) ∈ U if and only if (u2, u1) ∈ U and d1 = d2), we
have f1(U, d) = f2(U, d).
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Axioms

Axiom 6 (Invariance to Linear Transformations)
A bargaining solution f is invariant if for any bargaining problem (U, d)
and all αi ∈ (0,∞), βi ∈ R (i = 1, 2), if we consider the bargaining problem
(U′, d′) with

U′ = {(α1u1 + β1, α2u2 + β2) | (u1, u2) ∈ U}

d′ = (α1d1 + β1, α2d2 + β2)

then fi(U′, d′) = αi fi(U, d) + βi for i = 1, 2.

Axiom 7 (Independence of Irrelevant Alternatives)
A bargaining solution f is independent if for any two bargaining problems
(U, d) and (U′, d) with U′ ⊆ U and f(U, d) ∈ U′, we have
f(U′, d) = f(U, d).
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Characterization
Theorem 6
fN is the unique bargaining solution that satisfies the four axioms.

Check that fN satisfies the axioms.
1 Pareto efficiency: follows from the fact that (u1 − d1)(u2 − d2) is

increasing in u1 and u2.
2 Symmetry: if (U, d) is a symmetric bargaining problem then

(fN(2 U, d), fN(1 U, d)) ∈ U also solves the optimization problem. By the
uniqueness of the optimal solution, fN N(1 U, d) = f (2 U, d).

3 Independence of irrelevant alternatives: if fN(U, d) ∈ U′ ⊆ U. The
value of the objective function for (U′, d) cannot exceed that for
(U, d N). Since f (U, d) ∈ U′, the two values must be equal, and by the
uniqueness of the optimal solution, fN(U, d) = fN(U′, d).

4 Invariance to linear transformations: fN(U′, d′) is an optimal solution
for

max (u α β α β . . .1
′

1d1 1)(u2
′

2d2 2)
{(u1
′ ,u2
′ )|u1

′=α1u1+β1,u2
′=α2u2+β2,(u1,u2)

− − − −
∈U}
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Proof

Show that for any f that satisfies the axioms, f(U, d) = fN(U, d),∀(U, d).

Fix a bargaining problem (U, d) and let z = fN(U, d). There exists
αi > 0, βi such that the transformation ui → αiui + βi takes di to 0 and zi to
1/2. Define

U′ = {(α1u1 + β1, α2u2 + β2)|(u1, u2) ∈ U}.

Since f and fN satisfy the invariance to linear transformations axiom,
f(U, d) = fN(U, d N) iff f(U′, 0) = f (U′, 0) = (1/2, 1/2). It suffices to prove
f(U′, 0) = (1/2, 1/2).
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Proof

The line {(u1, u2)|u1 + u2 = 1} is tangent to the hyperbola
{(u1, u2) u1u2 = 1/4 at the point (1/2, 1/2). Given that
fN

| }

(U′, 0) = (1/2, 1/2), argue that u1 + u2 ≤ 1 for all u ∈ U′.

Since U′ is bounded, we can find a rectangle U′′ with one side along the
line u1 + u2 = 1, symmetric with respect to the line u1 = u2, such that
U′ ⊆ U′′ and (1/2, 1/2) is on the boundary of U′′. Since f is efficient and
symmetric, it must be that f(U′′, 0) = (1/2, 1/2).

f satisfies independence of irrelevant alternatives, so
f(U′′, 0) = (1/2, 1/2) ∈ U′ ⊆ U′′ ⇒ f(U′, 0) = (1/2, 1/2)
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Bargaining with Alternating Offers
I players i = 1, 2; j = 3 − i
I set of feasible utility pairs

U = {(u1, u2) ∈ [0,∞ 2) |u2 ≤ g2(u1)}

I g2 s. decreasing, concave, g2(0) > 0
I disagreement point d = (0, 0)

I δi : discount factor of player i
I at every time t = 0, 1, . . ., player i(t) proposes an alternative

u = (u1, u2) ∈ U to player j(t) = 3 − i(t)

i(t) =

1 for t even

2 for t odd

I if j(t) accepts the offer, game


ends yielding payoffs (δt ,1u1 δt

2u2)
I otherwise, game proceeds to period t + 1
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Subgame perfect equilibrium

Define g1 = g−1
2 . Graphs of g2 and g1

−1: Pareto-frontier of U

Let (m1,m2) be the unique solution to the following system of equations

m1 = δ1g1 (m2)

m2 = δ2g2 (m1) .

(m1,m2) is the intersection of the graphs of δ2g2 and (δ1g1)−1.

Subgame perfect equilibrium in “stationary” strategies: in any period
where player i has to make an offer to j, he offers u with uj = mj and
ui = gi(mj), and j accepts only offers u with uj ≥ mj .
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Nash Bargaining

Assume g2 is decreasing, s. concave and continuously differentiable.

Nash bargaining solution:

{u∗} = arg max u1u2.
u∈U

Theorem 7 (Binmore, Rubinstein and Wolinsky 1985)
Suppose that δ1 = δ2 =: δ in the alternating bargaining model. Then the
unique SPE payoffs converge to the Nash bargaining solution as δ→ 1.

m1g2 (m1) = m2g1 (m2)

(m1, g2 (m1)) and (g1 (m2) ,m2) belong to the intersection of g2’s graph
with the same hyperbola, which approaches the hyperbola tangent to the
boundary of U (at u∗) as δ→ 1.
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