Single-Deviation Principle and Bargaining

Mihai Manea

MIT

Multi-stage games with observable actions

- finite set of players N
- ▶ stages t = 0, 1, 2, ...
- H: set of terminal histories (sequences of action profiles of possibly different lengths)
- at stage t, after having observed a non-terminal history of play h_t = (a⁰,..., a^{t-1}) ∉ H, each player i simultaneously chooses an action a^t_i ∈ A_i(h_t)
- $u_i(h)$: payoff of $i \in N$ for terminal history $h \in H$
- σ_i : behavior strategy for $i \in N$ specifies $\sigma_i(h) \in \Delta(A_i(h))$ for $h \notin H$

Often natural to identify "stages" with time periods.

Examples

- repeated games
- alternating bargaining game

Unimprovable Strategies

To verify that a strategy profile σ constitutes a subgame perfect equilibrium (SPE) in a multi-stage game with observed actions, it suffices to check whether there are any histories h_t where some player *i* can gain by deviating from playing $\sigma_i(h_t)$ at *t* and conforming to σ_i elsewhere.

 $u_i(\sigma|h_t)$: expected payoff of player *i* in the subgame starting at h_t and played according to σ thereafter

Definition 1

A strategy σ_i is *unimprovable* given σ_{-i} if $u_i(\sigma_i, \sigma_{-i}|h_t) \ge u_i(\sigma'_i, \sigma_{-i}|h_t)$ for every h_t and σ'_i with $\sigma'_i(h) = \sigma_i(h)$ for all $h \ne h_t$.

Continuity at Infinity

If σ is an SPE then σ_i is unimprovable given σ_{-i} . For the converse...

Definition 2

A game is continuous at infinity if

$$\lim_{t\to\infty}\sup_{\{(h,\tilde{h})|h_t=\tilde{h}_t\}}|u_i(h)-u_i(\tilde{h})|=0, \forall i\in N.$$

Events in the distant future are relatively unimportant.

Single (or One-Shot) Deviation Principle

Theorem 1

Consider a multi-stage game with observed actions that is continuous at infinity. If σ_i is unimprovable given σ_{-i} for all $i \in N$, then σ constitutes an SPE.

Proof allows for infinite action spaces at some stages. There exist versions for games with unobserved actions.

Suppose that σ_i is unimprovable given σ_{-i} , but σ_i is not a best response to σ_{-i} following some history h_t . Let σ_i^1 be a strictly better response and define

$$\varepsilon = u_i(\sigma_i^1, \sigma_{-i}|h_t) - u_i(\sigma_i, \sigma_{-i}|h_t) > 0.$$

Since the game is *continuous at infinity*, there exists t' > t and σ_i^2 s.t. σ_i^2 is identical to σ_i^1 at all information sets up to (and including) stage t', σ_i^2 coincides with σ_i across all longer histories and

$$|u_i(\sigma_i^2,\sigma_{-i}|h_t) - u_i(\sigma_i^1,\sigma_{-i}|h_t)| < \varepsilon/2.$$

Then

$$u_i(\sigma_i^2, \sigma_{-i}|h_t) > u_i(\sigma_i, \sigma_{-i}|h_t).$$

 σ_i^3 : strategy obtained from σ_i^2 by replacing the stage t' actions following any history $h_{t'}$ with the corresponding actions under σ_i

Conditional on any $h_{t'}$, σ_i and σ_i^3 coincide, hence

$$u_i(\sigma_i^3,\sigma_{-i}|h_{t'})=u_i(\sigma_i,\sigma_{-i}|h_{t'}).$$

As σ_i is *unimprovable* given σ_{-i} , and conditional on $h_{t'}$ the subsequent play in strategies σ_i and σ_i^2 differs only at stage t',

$$u_i(\sigma_i, \sigma_{-i}|h_{t'}) \geq u_i(\sigma_i^2, \sigma_{-i}|h_{t'}).$$

Then

$$u_i(\sigma_i^3,\sigma_{-i}|h_{t'}) \geq u_i(\sigma_i^2,\sigma_{-i}|h_{t'})$$

for all histories $h_{t'}$. Since σ_i^2 and σ_i^3 coincide before reaching stage t',

$$u_i(\sigma_i^3, \sigma_{-i}|h_t) \ge u_i(\sigma_i^2, \sigma_{-i}|h_t).$$

 σ_i^4 : strategy obtained from σ_i^3 by replacing the stage t' - 1 actions following any history $h_{t'-1}$ with the corresponding actions under σ_i Similarly,

$$u_i(\sigma_i^4, \sigma_{-i}|h_t) \ge u_i(\sigma_i^3, \sigma_{-i}|h_t) \dots$$

The final strategy $\sigma_i^{t'-t+3}$ is identical to σ_i conditional on h_t and

$$u_i(\sigma_i, \sigma_{-i}|h_t) = u_i(\sigma_i^{t'-t+3}, \sigma_{-i}|h_t) \ge \dots$$
$$\ge u_i(\sigma_i^3, \sigma_{-i}|h_t) \ge u_i(\sigma_i^2, \sigma_{-i}|h_t) > u_i(\sigma_i, \sigma_{-i}|h_t),$$

a contradiction.

Applications

Apply the single deviation principle to repeated prisoners' dilemma to implement the following equilibrium paths for high discount factors:

- ► (*C*, *C*), (*C*, *C*), . . .
- ► $(C, C), (C, C), (D, D), (C, C), (C, C), (D, D), \dots$

•
$$(C, D), (D, C), (C, D), (D, C) \dots$$

	С	D
С	1,1	-1,2
D	2, -1	0,0

Cooperation is possible in repeated play.

Bargaining with Alternating Offers

Rubinstein (1982)

- ▶ players *i* = 1, 2; *j* = 3 − *i*
- set of feasible utility pairs

$$U = \{(u_1, u_2) \in [0, \infty)^2 | u_2 \le g_2(u_1)\}$$

- ▶ g_2 s. decreasing, concave (and hence continuous), $g_2(0) > 0$
- δ_i : discount factor of player *i*
- at every time t = 0, 1, ..., player i(t) proposes an alternative $u = (u_1, u_2) \in U$ to player j(t) = 3 i(t)

$$i(t) = egin{cases} 1 ext{ for } t ext{ even} \ 2 ext{ for } t ext{ odd} \end{cases}$$

- if j(t) accepts the offer, game ends yielding payoffs $(\delta_1^t u_1, \delta_2^t u_2)$
- otherwise, game proceeds to period t + 1

Mihai Manea (MIT)

Stationary SPE

Define $g_1 = g_2^{-1}$. Graphs of g_2 and g_1^{-1} : Pareto-frontier of *U* Let (m_1, m_2) be the unique solution to the following system of equations

$$m_1 = \delta_1 g_1(m_2)$$

 $m_2 = \delta_2 g_2(m_1).$

 (m_1, m_2) is the intersection of the graphs of $\delta_2 g_2$ and $(\delta_1 g_1)^{-1}$.

SPE in "stationary" strategies: in any period where player *i* has to make an offer to *j*, he offers *u* with $u_j = m_j$ and $u_i = g_i(m_j)$, and *j* accepts only offers *u* with $u_j \ge m_j$.

Single-deviation principle: constructed strategies form an SPE.

Is the SPE unique?

Iterated Conditional Dominance

Definition 3

In a multi-stage game with observable actions, an action a_i is conditionally dominated at stage t given history h_t if, in the subgame starting at h_t , every strategy for player *i* that assigns positive probability to a_i is strictly dominated.

Proposition 1

In any multi-stage game with observable actions, every SPE survives the iterated elimination of conditionally dominated strategies.

Iterated conditional dominance: stationary equilibrium is essentially the unique SPE.

Theorem 2

The SPE of the alternating-offer bargaining game is unique, except for the decision to accept or reject Pareto-inefficient offers.

Following a disagreement at date t, player i cannot obtain a period t expected payoff greater than

$$M_i^0 = \delta_i \max_{u \in U} u_i = \delta_i g_i(0)$$

- Rejecting an offer u with u_i > M_i⁰ is conditionally dominated by accepting such an offer for i.
- Once we eliminate dominated actions, *i* accepts all offers *u* with *u_i* > *M_i⁰* from *j*.
- ▶ Making any offer *u* with $u_i > M_i^0$ is dominated for *j* by an offer $\bar{u} = \lambda u + (1 \lambda) (M_i^0, g_j(M_i^0))$ for $\lambda \in (0, 1)$ (both offers are accepted immediately).

Under the surviving strategies

► *j* can reject an offer from *i* and make a counteroffer next period that leaves him with slightly less than $g_j(M_i^0)$, which *i* accepts; it is conditionally dominated for *j* to accept any offer smaller than

$$m_j^1 = \delta_j g_j \left(M_i^0 \right)$$

i cannot expect to receive a continuation payoff greater than

$$M_{i}^{1} = \max\left(\delta_{i}g_{i}\left(m_{j}^{1}\right), \delta_{i}^{2}M_{i}^{0}\right) = \delta_{i}g_{i}\left(m_{j}^{1}\right)$$

after rejecting an offer from j

$$\delta_{i}g_{i}\left(m_{j}^{1}\right) = \delta_{i}g_{i}\left(\delta_{j}g_{j}\left(M_{i}^{0}\right)\right) \geq \delta_{i}g_{i}\left(g_{j}\left(M_{i}^{0}\right)\right) = \delta_{i}M_{i}^{0} \geq \delta_{i}^{2}M_{i}^{0}$$

Recursively define

$$\begin{array}{lll} m_j^{k+1} & = & \delta_j g_j \left(M_i^k \right) \\ M_i^{k+1} & = & \delta_i g_i \left(m_j^{k+1} \right) \end{array}$$

for i = 1, 2 and $k \ge 1$. $(m_i^k)_{k\ge 0}$ is increasing and $(M_i^k)_{k\ge 0}$ is decreasing.

Prove by induction on k that, under any strategy that survives iterated conditional dominance, player i = 1, 2

- never accepts offers with $u_i < m_i^k$
- ► always accepts offers with u_i > M^k_i, but making such offers is dominated for *j*.

The sequences (m^k_i) and (M^k_i) are monotonic and bounded, so they need to converge. The limits satisfy

$$\begin{split} m_j^{\infty} &= \delta_j g_j \left(\delta_i g_i \left(m_j^{\infty} \right) \right) \\ M_i^{\infty} &= \delta_i g_i \left(m_j^{\infty} \right). \end{split}$$

- (m₁[∞], m₂[∞]) is the (unique) intersection point of the graphs of the functions δ₂g₂ and (δ₁g₁)⁻¹
- $M_i^{\infty} = \delta_i g_i \left(m_j^{\infty} \right) = m_i^{\infty}$
- All strategies of *i* that survive iterated conditional dominance accept *u* with $u_i > M_i^{\infty} = m_i^{\infty}$ and reject *u* with $u_i < m_i^{\infty} = M_i^{\infty}$.

In an SPE

- ► at any history where *i* is the proposer, *i*'s payoff is at least g_i(m_j[∞]): offer *u* arbitrarily close to (g_i(m_j[∞]), m_j[∞]), which *j* accepts under the strategies surviving the elimination process
- *i* cannot get more than $g_i(m_i^{\infty})$
 - ► any offer made by *i* specifying a payoff greater than g_i(m_j[∞]) for himself would leave *j* with less than m_j[∞]; such offers are rejected by *j* under the surviving strategies
 - under the surviving strategies, *j* never offers *i* more than $M_i^{\infty} = \delta_i g_i(m_j^{\infty}) \le g_i(m_j^{\infty})$
- ▶ hence *i*'s payoff at any history where *i* is the proposer is exactly $g_i(m_j^{\infty})$; possible only if *i* offers $(g_i(m_j^{\infty}), m_j^{\infty})$ and *j* accepts with probability 1

Uniquely pinned down actions at every history, except those where *j* has just received an offer (u_i, m_i^{∞}) for some $u_i < g_i(m_i^{\infty})$...

Properties of the equilibrium

- The SPE is efficient—agreement is obtained in the first period, without delay.
- ▶ SPE payoffs: $(g_1(m_2), m_2)$, where (m_1, m_2) solve

 $m_1 = \delta_1 g_1 (m_2)$ $m_2 = \delta_2 g_2 (m_1).$

- Patient players get higher payoffs: the payoff of player *i* is increasing in δ_i and decreasing in δ_j.
- For a fixed δ₁ ∈ (0, 1), the payoff of player 2 converges to 0 as δ₂ → 0 and to max_{u∈U} u₂ as δ₂ → 1.
- If U is symmetric and δ₁ = δ₂, player 1 enjoys a first mover advantage: m₁ = m₂ and g₁(m₂) = m₂/δ > m₂.

Nash Bargaining

Assume g_2 is decreasing, s. concave and continuously differentiable. Nash (1950) bargaining solution:

$$\{u^*\} = \underset{u \in U}{\arg \max u_1 u_2} = \underset{u \in U}{\arg \max u_1 g_2(u_1)}.$$

Theorem 3 (Binmore, Rubinstein and Wolinsky 1985)

Suppose that $\delta_1 = \delta_2 =: \delta$ in the alternating bargaining model. Then the unique SPE payoffs converge to the Nash bargaining solution as $\delta \to 1$.

$$m_1g_2(m_1) = m_2g_1(m_2)$$

 $(m_1, g_2(m_1))$ and $(g_1(m_2), m_2)$ belong to the intersection of g_2 's graph with the same hyperbola, which approaches the hyperbola tangent to the boundary of U (at u^*) as $\delta \to 1$.

Bargaining with random selection of proposer

- Two players need to divide \$1.
- Every period t = 0, 1, ... player 1 is chosen with probability p to make an offer to player 2.
- Player 2 accepts or rejects 1's proposal.
- ► Roles are interchanged with probability 1 p.
- In case of disagreement the game proceeds to the next period.
- The game ends as soon as an offer is accepted.
- Player i = 1, 2 has discount factor δ_i .

Equilibrium

- The unique equilibrium is stationary, i.e., each player *i* has the same expected payoff v_i in every subgame.
- Payoffs solve

$$\begin{aligned} v_1 &= p(1-\delta_2 v_2) + (1-p)\delta_1 v_1 \\ v_2 &= p\delta_2 v_2 + (1-p)(1-\delta_1 v_1). \end{aligned}$$

The solution is

$$v_1 = \frac{p/(1-\delta_1)}{p/(1-\delta_1) + (1-p)/(1-\delta_2)}$$

$$v_2 = \frac{(1-p)/(1-\delta_2)}{p/(1-\delta_1) + (1-p)/(1-\delta_2)}.$$

Comparative Statics

$$\begin{array}{rcl}
\nu_1 &=& \displaystyle \frac{1}{1+\frac{(1-p)(1-\delta_1)}{p(1-\delta_2)}} \\
\nu_2 &=& \displaystyle \frac{1}{1+\frac{p(1-\delta_2)}{(1-p)(1-\delta_1)}}
\end{array}$$

- Immediate agreement
- First mover advantage
 - v₁ increases with p, v₂ decreases with p.
 - For $\delta_1 = \delta_2$, we obtain $v_1 = p$, $v_2 = 1 p$.
- Patience pays off
 - v_i increases with δ_i and decreases with δ_i (j = 3 i).
 - Fix δ_j and take $\delta_i \rightarrow 1$, we get $v_i \rightarrow 1$ and $v_j \rightarrow 0$.

MIT OpenCourseWare https://ocw.mit.edu

14.16 Strategy and Information Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.