Rational Addiction and Massively Multiplayer Games:
 A case study of World of Warcraft
 By Nicholas Hunter

Introduction

Video games have been receiving a negative public image for, among various other reasons, their "addictive" qualities. It is a cliché of the $20^{\text {th }}$ and $21^{\text {st }}$ centuries to brand nascent media forms as the "downfall of modern society," so why give it a second thought? What's particularly interesting in the case of the discourse surrounding video games is that the consumers under scrutiny, gamers, will often freely admit their "addiction" to games. Particularly, Massively Multiplayer Online Roleplaying Games (MMORPG, or MMO) have received the dubious moniker, within the gaming community, of being a hardcore drug. ${ }^{1}$ Given the concerns of society and the purported addictive nature of MMOs, it is an appealing candidate for study.

This paper attempts to determine whether World of Warcraft, an acclaimed and relatively new MMO, is addictive to its players, and if so, what breed of addiction it engenders. Rational Addiction theory as developed by Stigler and Becker (1977) and Becker and Murphy (1988) provide theoretical tools to test these hypotheses. The dataset used in this paper restricts the scope of all conclusions to concern the behaviors of World of Warcraft players. Ultimately, there are indications that World of Warcraft players are experiencing addiction, but the data is inconclusive as to whether it is beneficial or harmful. A more ideal research plan will also be proposed in the process of discussing methods and results.

Theoretical Models

Rational Addiction Model

Chaloupka (1991) does a good job of summarizing the mathematics and theory behind $\mathrm{B} \& \mathrm{M}$ (1988), so the reader is referred to that for a more comprehensive coverage

[^0]of the topic. The basic assumptions and formulae underlying the rational addiction model are presented here.

Put simply, if consuming a good in the past increases how much of that good you consume in the future, we say that the good is addictive. Once it is established that a good is addictive, we look at the long-run elasticity of demand in order to determine what kind of addiction the user is experiencing, either Negative or Beneficial. In economic terms, cocaine and tobacco are classic examples of negatively addictive products, not because of the negative health effects that one receives from consuming them, ${ }^{2}$ but rather, because of the addict's high resistance to price shocks resulting from an inelastic demand curve for the product. As S\&B (1977) emphasizes, the inelasticity of the demand curve is responsible for the negative nature of the addiction, and not the other way around.

On the other hand, music appreciation is demonstrative of Beneficial Addiction. ${ }^{3}$ The more good music a person listens to, the more good music they want to listen to. Unlike negatively addictive products though, beneficially addictive goods have a high elasticity of demand, and are thus very sensitive to price shocks. If, for example, the price of opera tickets were doubled, and opera consumption is a beneficially addictive good to opera fans, then we would expect that, despite their fandom, the number of operas viewed by the opera fans would fall to less than 50% of the previous number of operas viewed.

Thus, "Negative Addiction" is simply an addictive good whose consumption is resistant to changes in price, and "Beneficial Addiction" is an addictive good whose consumption is very sensitive to price.

In the Rational Addiction model, the consumer's instantaneous utility function takes the form:

$$
U(t)=U[C(t), A(t), Y(t)]
$$

where $C(t)$ is consumption of the good in question at time $t, Y(t)$ is the consumption of all other goods at time t, and $A(t)$ is the addictive stock ${ }^{4}$ related to the good in question

[^1]that has been developed up until time t. The dynamics of the utility function are as follows:
\[

$$
\begin{gather*}
\frac{\partial U(t)}{\partial C(t)}>0 \\
\frac{\partial U(t)}{\partial A(t)}<0 \\
\frac{\partial U(t)}{\partial Y(t)}>0 \\
\frac{\partial^{2} U(t)}{\partial C(t) \partial A(t)}>0 \\
\frac{\partial^{2} U(t)}{\partial^{2} i(t)}<0 \quad i(t)=C(t), A(t), Y(t) \tag{6}
\end{gather*}
$$
\]

As Chaloupka (1991) states, Equations (2), (3), and (5) illustrate three key properties of addictive goods. Equation (2) describes withdrawal from a good, as reducing consumption of the good in question reduces the consumer's overall utility. Equation (3) describes tolerance; ceteris paribus, greater cumulative past consumption lowers current utility. Equation (5) describes reinforcement; the marginal utility of current consumption is larger as past consumption is greater.

Prior to any consumption of the good in question, $A(t)=0 . A(t)$ develops in the following manner:

$$
A(t)^{\prime}=C(t)-\delta A(t)(7)
$$

where δ is the depreciation rate of the addictive stock. ${ }^{5}$
Rational addiction implies that addicts will attempt to maximize their lifetime utility function. Assuming a time-additive utility function, ${ }^{6}$ a constant rate of time preference, σ, and an infinite lifetime, the lifetime utility function takes the form:

$$
U(t)=\int_{0}^{\infty} e^{-\sigma t} U[C(t), A(t), Y(t)] d t(8)
$$

[^2]Chaloupka (1991) then develops the full price for consuming an addictive good by ignoring the allocation of time over the life cycle, setting $P_{Y}(t)=1$, and perfect capital markets. The full price is then:

$$
\begin{equation*}
\pi_{C}(t)=P_{C}(t) e^{-(\sigma-r) t}-\int_{t}^{\infty} e^{-(\sigma+\delta)(\tau-t)} U_{A}(\tau) d \tau(9 \tag{9}
\end{equation*}
$$

Since $U_{A}{ }^{7}$ is always negative, the full price, $\pi_{C}(t)$, is always greater than the instantaneous cost, $P_{C}(t)$. So as the addiction stock of the good in question rises, the full price of consuming the good in question also rises. Equilibrium is expected to form as the full price of consuming a good rises until the good becomes too expensive to continue to increase consumption levels. If the depreciation rate of the addictive stock increases, then the shadow price created by the addictive stock falls, increasing overall consumption. Also, if the rate of time preference increases, then the full price falls, raising the equilibrium level of consumption. ${ }^{8}$

Massively Multiplayer Online Games

There are some concepts specific to the MMO genre of games that should be defined so that people unfamiliar with the genre or with games in general, will have a better understanding of the systems and experiences discussed.

MMOs are virtual worlds that continue to exist even while a player is not playing the game. Generally speaking, several thousand players will be playing in the virtual world at any given point in time. The state of a world at any given point in time is defined by what players are in the world, and what action they are undertaking.

- Player Character (PC): The in-game representation of a player. PCs generally have a complex set of statistics that govern how they can interact with the world.
- Character Level: A character's level is a measure of the power that the character possesses, and is, to some extent, a proxy for how much time a player has invested in a PC. In WoW, the maximum level a PC can currently have is 60.

[^3]- Communication Channels: Players can communicate with one another using text chat similar to an Instant Messenger. While there is some filtering that can go on, the basic kinds of communication are Private, Public, and Broadcast. Private communications are only visible to the person that sends the message and the person that is was sent to. Public communications are visible to the person that sends the message and anyone that is within close physical proximity within the geography of the game world. Broadcast communications are visible to anyone that is listening to the "channel" that the message is broadcasted to. ${ }^{9}$

As a player progresses through the game by increasing the level of their character, or "leveling up," the fundamental experiences involved in play do not change drastically. What does change is the amount of time that the game requires of players in order to achieve particular measures of success. For example, to go from level 1 to level 2, it requires 1-2 hours on average. To go from level 59 to level 60, it can require upwards of 24 hours of play. So while the nature of the product does not drastically change from initial consumption, the reward structure shifts so that it requires players to progressively invest more time in order to maintain their prior levels of rewards received from the game. The general consensus is that this kind of reward structure encourages increasing length of play, which would make it an addictive property.

It should be noted that there is no end condition for MMOs. Players are free to inhabit the virtual world so long as they continue to pay their monthly fee. In fact, much of the new content added to the game revolves around giving new content to those who have achieved the pinnacle of the game's level system.

Methods

This paper uses a modified version of the applied model Chaloupka (1991) developed to estimate the elasticity of demand for the consumption of World of Warcraft playtime, $\mathrm{C}_{\text {Wow }}$, measured in units of time.

The models that Chaloupka (1991) offers are as follows:

[^4]\[

$$
\begin{gather*}
C_{t}=\beta_{0}+\beta_{1} P_{C}(t)+\beta_{2} P_{C}(t-1)+\beta_{3} P_{C}(t+1)+\beta_{4} C(t-1)+\beta_{5} C(t+1) \tag{10}\\
\text { and } \\
C_{t}=\Phi_{0}+\Phi_{1} P_{C}(t)+\Phi_{2} P_{C}(t+1)+\Phi_{3} C(t+1)+\Phi_{4} A(t)(11)^{10} \tag{10}
\end{gather*}
$$
\]

Equations (10) and (11) represent the instantaneous demand for C. It is easier to get data that fits Equation (10), however, the data collection period for this paper was restricted, and so the remainder shall use Equation (11) as the basis for empirical analysis.

The major discrepancy between previous studies and this case study is that the usual monetary price for our good $\mathrm{C}_{\text {Wow }}$ is fixed at a monthly rate. So, if we take the usual assumption that price is the monetary cost per unit of consumption, $\mathrm{P}_{\mathrm{Wow}, \mathrm{t}}$ is then inversely proportional to $\mathrm{C}_{\mathrm{WoW}, \mathrm{t}}$, as an increase in $\mathrm{C}_{\mathrm{WoW}, \mathrm{t}}$ from any positive quantity incurs no additional monetary cost.

This is not a problem that solely relates to the consumption of WoW, or even games in general. Let's take a step back and look at the consumption patterns of media products. The monetary price that one pays to gain access to the product is by all means the first step in the decision making process for consumption. However, once one has access to the good, a second process of valuation begins to occur: "how long will I consume the product for?" The utility of the specific activity in its simplest form is presumably of the form:

$$
U(\text { Activity })=\int_{0}^{\text {Completion }} U\left(I_{X}(t)\right) d t(12)
$$

where U (Activity) is equal to the total utility received from consuming the entertainment product, $I_{X}(t)$ is the intensity of entertainment that is delivered at the instantaneous point in time t.

Now let's take a brief look at the decision process behind deciding to "put down" an activity and start up another one. The general form of the equation, taken from marginal decision making theory, would be:

$$
\begin{equation*}
\frac{\int_{0}^{\text {Completion }} E\left[U\left(I_{Y}(t)\right)\right] d t}{P_{Y}(t)}>\frac{\int_{\text {Current }}^{\text {Completion }} E\left[U\left(I_{X}(t)\right)\right] d t}{P_{X}(t)} \tag{13}
\end{equation*}
$$

[^5]So if a consumer expects that they will get more marginal utility per cost out of starting to consume a new entertainment product than finishing the one that they're currently consuming, they will switch products. However, how do we describe the price of finishing product $X, P_{X}(t)$ If rigid definitions of monetary price are maintained, then technically $P_{X}(t)$ is zero, in which case there are no expectations that people would switch entertainment products midway, unless $P_{Y}(t)$ also happens to be 0 .

And yet this switching behavior is not an infrequent occurrence. It seems likely that somebody has stopped consuming a book, TV, or game in deference to doing some other activity. If the opportunity cost of continuing to consume the entertainment good is not accounted for in the price of continued consumption, then the model of marginal decision making seem to fall apart when looking at an individual's consumption patterns. ${ }^{11}$

Traditional economics does offer a method for evaluating the opportunity cost of a good. At the margin, the cost of non-productive time is the person's wage rate. This will be one of the models used to evaluate the price of playing, namely:

$$
P_{X, t}=w_{t}(14)
$$

where w_{t} is the person's wage rate for that period of time. Overall utility levels are maintained when trading between activities when time is evaluated in this manner.

The wage rate method of time valuation solves the problem of having $P_{X}(t)$ equal zero, but it seems to best describe evaluating opportunity cost of other activities versus work. $P_{X}=w$ and $P_{Y}=w+\frac{P_{Y, i}}{t}$ 12 solves the problem of having infinite marginal value in Equation (13), at which point, any relative valuations of activities are captured in the utility function in the numerator. However, Equation (11) requires that we have a single price statistic for each period; as stated before, the wage rate model does not seem to sufficiently capture the valuation of playing WoW versus all other activities. For this

[^6]reason, an approach to develop a relative value of time spent playing WoW versus other as an estimate of the opportunity cost for playing WoW is proposed.

Assumptions for the Time Valuation Model

The motivation for this model is to attempt to develop a metric for the opportunity cost of changing the allocation of time given to a particular activity, without directly observing the monetary repercussions of changing said allocation. The opportunity cost of a given activity is assumed to be the net-utility given up by making a change in a consumer's allocation of time.

First, this model withdraws the usual assumption that the consumer is efficient and always finds their optimal indifference curve. This is not to say that the consumer is not rational and does not attempt to maximize their utility, but rather, that they are often unable to find their optimal indifference curve because of shifting valuations and information asymmetry. Thus, when a person makes a behavior shift, they will likely also shift the indifference curve that they occupy. ${ }^{13}$ The consumer's utility function takes the form:

$$
U(t)=U[A 1(t), A 2(t), \ldots, A n(t)](15)
$$

and the indifference curve for any particular activity is the partial derivative of (15) with respect to the consumption of the activity in question. The partial derivative of the indifference curve for Activity j,

$$
\begin{equation*}
U_{j k}(t)=\frac{\partial^{2} U(t)}{\partial A j(t) \partial A k(t)} \tag{16}
\end{equation*}
$$

is of particular importance because it describes the relationship of Activities j and k. If $U_{j k}(t)$ is positive, the two activities are complementary. If $U_{j k}(t)$ is negative, the two activities are substitutes.

Second, the currency in question is time, and the consumption good is the allocation of that time. This has two useful properties:

[^7]Time Property 1: It is a zero-sum system; a change in one variable is reflected in an equal and opposite net change dispersed throughout all other variables

$$
T=\sum A i(t)
$$

Time Property 2: All sample members are equally wealthy; everyone has the same amount of time to allocate

Time Property 1 suggests that any positive change in one variable should precipitate a negative change in another variable. Ceteris paribus, the effect of a change in the allocation of time for one activity on another activity should demand a direct trade off between the two activities. The budget for any given activity is then:

$$
A_{\text {observed }}=T-\sum A i(t)
$$

where the partial derivative of Equation (18) with respect to any activity should be equal to -1 .

The interactions of the indifference curves from Equation (16) and the budget constraint of Equation (18) are significant. If a positive change in one variable affects a positive change in another variable, then it simply means that a greater negative change must happen elsewhere in the system in order to accommodate the greater overall positive change. Thus, we will be able to accept positive relationships between various activities so long as there is at least one negative relationship among all of the relationships between a particular activity and every other activity.

Time Property 2 benefits the empirical application of the model, as it states that all sample members possess the same amount of the currency, which makes sample members more relatable, even if demographic factors are disparate.

Regression Model

Using the following matrix of regressions, we determine a relationship between $C_{\text {WoW,t }}$ and our basket of other observed activities. ${ }^{14}$

$$
\text { ActivityA }=\beta_{0}+\beta_{\text {Wow, ActivityA,t }} C_{\text {Wow }, t}+\sum \beta_{A c t i v i t y B, A c t i v i t y A, t} \text { Activity }_{t}(19)
$$

[^8]where Activity A is the activity in question, and Activity B is all other activities. The matrix of regressions is developed by running the regression of Equation (19) for each of the activities in the basket as ActivityA.
\[

$$
\begin{equation*}
\text { Work }_{t}=\beta_{0}+\beta_{\text {Wow,Wor }, t} C_{\text {Wow,t }, t}+\beta_{\text {Other,Work,t }} \text { Other }_{t t}+\beta_{\text {Sleep,Work }, t} \text { Sleep }_{t}+\beta_{\text {Eat,Work }, t} \text { Eat }_{t}+\beta_{\text {Hygiene,Work },} \text { Hygiene }_{t} \tag{20}
\end{equation*}
$$

\]

Equation (20) is the application of Equation (19) to Work for this study. See Equations (A2) through (A6) in the Appendix I for the full list. The β s are interpreted as follows:
β_{0} is the base amount of time the consumer expects to allocate to an activity

Equation (21) states that for a unit increase in ActivityB, the amount of ActivityA performed will change by $\beta_{\text {ActivityB,ActivityA, } t} \cdot{ }^{15} \Delta$ ActivityB is interpreted as a change in the allocation of time, our consumption good, and Δ Activity A_{t} is the cost incurred on ActivityA for making that allocation. If there is no preference in which activity time is drawn from to accommodate an increase in an activity, we would expect all the β s to be the equal. As later empirical analysis will show though, this is not the case. The sign of Δ Activity A_{t} will be determined by the relationship between the ActivityA and ActivityB. If the ActivityA and Activity B are substitutes, then Δ Activity $_{t}$ and Δ Activity B should have opposite signs. If the two are complementary, then Δ Activity $_{t}$ and Δ Activity should have the same signs. While at first thought it may seem unlikely for Δ Activity $_{t}$ and \triangle Activity B to be the same sign, remember that Time Property 1 merely requires that the net-change in the overall system be opposite and equal to Δ ActivityB. ${ }^{16}$

$$
P_{\text {ActivityB, ActivityA }}(t)=-\beta_{\text {ActivityB, ActivityA,t }}(22)
$$

Equation (22) is interpreted as the price per unit of consumption of. ActivityB with respect to ActivityA. The negative sign has been inserted in order to preserve the concept

[^9]that higher prices are more expensive, as is required for the dynamics of Equation (11) to behave properly.

Next, the total price of an activity is found in the sum the price of each activity relative to all other reported activities. Ceteris paribus is preserved, as only the change in one variable from each regression, ActivityB, is under inspection when totaling the price.

$$
\mathrm{P}_{\text {ActivityB }}(t)=\sum P_{\text {ActivityB,ActivityAi }}(t)
$$

$\mathrm{P}_{\text {Wow }}(t)$ describes the relationship between playing WoW and all other activities.
Time Property 1 suggests that $\mathrm{P}_{\mathrm{Wow}}(t)$ should be equal to positive unity in order to preserve the zero-sum system. If we find that $\mathrm{P}_{\text {wow }}(t) \neq 1$, then one of two things is happening. One possibility is that the set of observed activities was not comprehensive enough. This can be checked fairly easily by comparing the average time reported by sample members to the absolute time available for the period under examination. ${ }^{17}$ The other possibility is that the valuations of all other activities compared to WoW are not balanced as a perfect substitute for $C_{\text {Wow, } t} \cdot{ }^{18}$ In this case, the valuation of playing WoW is not in equilibrium with the all other activities. $\mathrm{P}_{\text {wow }}(t)<1$ suggests that utility would be increased by consuming more WoW. ${ }^{19} \mathrm{P}_{\text {Wow }}(t)>1$ suggests that utility would be decreased by consuming more WoW. ${ }^{20} \mathrm{P}_{\text {Wow }}(t)$ becomes an indicator of the valuation of playing WoW versus all other observed activities. If $\mathrm{P}_{\text {Wow }}(t)$ is not positive, then the basket of activities has likely omitted a significant substitute activity that is important to the sample under investigation. ${ }^{21}$

The regression model to determine addiction, drawn from Equation (11), is as follows:

[^10]\[

$$
\begin{equation*}
C_{\text {WoW }, t}=\beta_{0}+\beta_{1} P_{\text {WoW }}(t)+\beta_{2} P_{\text {WoW }}(t+1)+\beta_{3} C_{\text {WoW }}(t+1)+\beta_{4} M M O D(t) \tag{24}
\end{equation*}
$$

\]

where $\operatorname{MMOD}(t)$ is the depreciated history of play for all MMOs, including WoW, β_{4} is a crude substitute for Φ_{4} in (11). For, the wage rate price definition given in (14), we will assume that $\beta_{1}=\beta_{2}$, as data pertaining to wage is drawn from census averages for age and gender; minimal change is expected to appear over the one month interval.

Data

There are no published datasets available to the general community regarding usage statistics of WoW or any other MMO games. The dataset presented in conjunction with this paper was collected by interviewing a randomly selected sample of WoW players spread across 13 different servers. Members of the sample went through an initial interview and a follow up interview approximately a month's time after the initial interview.

Several measures were taken to acquire an independently and identically distributed random sample. First, a server was selected at random. Then, prior to an initial interview, potential sample members were selected by generating two evenly distributed random numbers. The first number, ranging from 1 to 60 , was used to determine the level of the PC. The second number, ranging from 1 to 26 , was used to determine the first letter of the name of the potential sample member. If, after applying these filters, there were no players that fit these two criteria, then the process would be restarted from the beginning. If there were multiple PCs that fit the criteria, then a third random number, whose range was the number of players meeting the criteria, was generated and used to select one of the candidates (still in alphabetical order). Character levels are not evenly distributed from 1 to 60, but a fair representation of the distribution is expected because the second filter the second filter rejected more often when there were fewer people at any particular level.

After a candidate was selected, they would be contacted over WoW's private communication channel. While there is some variation in the expression, the initial contact message basically was:
"hi, I'm doing a survey for a class and was wondering if you'd be willing to lend a hand by answering a few quick questions."

If the player agreed, ${ }^{22}$ then they would be asked the following series of questions:

1) How many hours a week do you play WoW?
2) Have you previously played an MMO? If so, for how long?
3) How many hours a week do you spend on other leisure activities? (e.g. other games, television, reading, going out, etc.)
4) How many hours per week do you work? (school, job, etc.)
5) How many hours a day do you sleep?
6) How much time a day do you spend eating?
7) How much time a day do you spend showering, brushing your teeth, etc.?
8) Do you regularly consume caffeine, tobacco, or alcohol? If so, how many times per week?
9) Which pricing plan do you use for WoW? (optional)
10) Finally, would you be willing to answer a similar set of questions in a month's time? ${ }^{23}$

These questions were asked using a chat macro that sent the above questions in their exact form to each sample member. The succeeding question was not asked until the previous question had been answered, so that later questions would not influence earlier questions. If data was given as a range, it was input into the dataset as the average of the range.

The follow up interview, approximately a month after the initial interview, required finding a player when they were logged on. ${ }^{24}$ When the player became available, they were asked the following set of questions:

1) How many hours a week do you play WoW?
2) How many hours a week do you spend on other leisure activities? (e.g. other games, television, reading, going out, etc.)
3) How many hours per week do you work? (school, job, etc.)
4) How many hours a day do you sleep?
5) How much time a day do you spend eating?
6) How much time a day do you spend showering, brushing your teeth, etc.?
7) What age group are you in? 13-18, 19-22, 23-34, 35-50, 51-64, 64+
8) Gender?

[^11]9) How many months have you been subscribed to WoW?
10) Do you regularly play WoW with people you know from real life?
11) Do you have any alternate characters? If so, what's your highest level character?
12) Do you believe that you are addicted to WoW? If so, do you think playing WoW has a negative impact on your life?

The follow up interview was conducted in the same manner as the initial interview, so all follow up questions were asked in the same order and language.

Character data that was accessible by using WoW's "/who <charactername>" function, as well as information about the server's population and rule set has also been included. Players on RP servers were not interviewed for this sample, as I viewed it as excessively intrusive for that context, and it also ran a higher risk of my presence being reported as a nuisance to the game's authorities, which could potentially result in a suspension of the privilege to enter WoW.

Income data was taken from the Bureau of Labor Services website, which means all income figures are medians of weekly income from the year 2004. I have adjusted them to reflect the wage rate for a 40 hour work week.

The price data used for the application of the Time Valuation model will break down the sample into two groups based upon age, 13-22 and 23+. The prices are generated by performing the matrix of regressions in Equation (19) separately, and then regressing Equation (24) with the values generated from Equation (23) subbed in appropriately. ${ }^{25}$

Results

S\&B (1977) suggests that one can determine whether a good is "beneficially" or "negatively" addictive by examining the long-run elasticity of demand for the good. The elasticity of demand is determined using the following equation:

$$
\frac{\partial C^{*}}{\partial P} \frac{P}{C^{*}}=\frac{\Phi_{1}+\Phi_{2}}{1-\Phi_{3}-\frac{\Phi_{4}}{\delta}} \frac{P}{C^{*}}(25)^{26}
$$

[^12]where δ is the percentage of addictive stock that depreciates between periods, P is the price of our good, and C* is the ideal level of consumption for the individual. ${ }^{27}$

Chaloupka (1991) points out that the roots of Equation (25) are useful in describing the dynamics of addictive good consumption, as the good is addictive if and only if both roots are positive.

$$
\lambda_{1}=\frac{1-\left(1-4 \frac{\Phi_{4}}{\delta} \Phi_{3}\right)}{2 \frac{\Phi_{4}}{\delta}} \text { and } \lambda_{2}=\frac{1+\left(1-4 \frac{\Phi_{4}}{\delta} \Phi_{3}\right)}{2 \frac{\Phi_{4}}{\delta}}
$$

The signs of the roots are then dependent on Φ_{3}, which is positive when a good is addictive. λ_{1}, the smaller root, gives us the change in current consumption as the result of a shock to future consumption. The inverse of λ_{2}, the larger root, gives us the change in current consumption as the result of a shock to past consumption. These shocks would result from any factor affecting consumption of the good in question, including past and future prices.

[^13]
Wage Rate Valuation

Independent Variable	$\delta=80 \%$	$\delta=60 \%$
	$(\mathrm{N}=30)$	
Price(t)	0.410304	0.423315
	(0.672371)	(0.67497)
Future Consumption	0.507233	0.5063
	(0.178267)	(0.180439)
Addictive Stock	87.12292	9.958262
	(229.424)	(44.33479)
F-statistic	3.29	3.24
Price Elasticity		
- Men 13-22	-0.001999	-0.018704
- Men 23+	-0.003808	-0.03563
- Women 13-22	-0.001875	-0.017544
- Women 23	-0.002995	-0.028018
$\lambda 1$	1.014466	1.0126
	-1.005283	0.93226

Time Valuation Model		
Independent Variable	$\delta=80 \%$	$\delta=60 \%$
	$(\mathrm{N}=30)$	
Price(t)	N/A	N/A
Price ($\mathrm{t}+1$)	2.785266	2.798715
	(4.645137)	(4.660889)
Future Consumption	. 5122935	0.5110483
	(0.177271)	(0.179746)
Addictive Stock	100.1197	12.44165
	(227.384)	(43.91983)
F-statistic	3.28	3.23
Price Elasticity		
- 13-22	0.000399	0.003321
- 23+	-0.001073	-0.008921
$\lambda 1$	1.024587	1.022097
$\lambda 2$	-1.016597	-0.957796

Price Statistics for Time Valuation model

hic	Total Price	Other	Work	Sleep	Eat	ne
Age 13-22	Price(0) 0.4723196	-0.0626437	-0.2686033	-0.1223381	-0.107248	0.0885135
($\mathrm{N}=12$)	Time Reported: 82.9\%	(0.4053249)	(0.4943951)	(0.2889901)	(0.1462293)	(0.1151601)
	Price(1) -0.338415	0.9718408	-0.7683519	0.1110053	0.0177173	0.0062038
	Time Reported: 85.8\%	(0.2592919)	(0.4640115)	(0.4002844)	(0.2490341)	(0.0764118)
Age 23+$(\mathrm{N}=18)$	Price(0) 0.9481921	-0.2816458	-0.630822	0.0311485	-0.0831457	0.0162729
	Time Reported: 83.8\%	(0.1915163)	(0.182814)	(0.1729044)	(0.078592)	(0.0437196)
	Price(1) 0.9090266	-0.2447218	-0.5796237	-0.242586	0.1234737	0.0344312
	Time Reported: 80.4\%	(0.1709744)	(0.1472782)	(0.1272064)	(0.0895484)	(0.0686362)
Full Sample$(N=30)$	Price(0) 1.024373	-0.3228934	-0.6019821	-0.0345955	-0.0864433	0.0215413
	Time Reported: 83.5\%	(0.1474151)	(0.1483851)	(0.1343857)	(0.0634363)	(0.0420573)
	Price(1) 0.2336089	0.3296063	-0.5314258	-0.1187132	0.0766136	0.0103102
	Time Reported: 82.6\%	(0.217972)	(0.1263981)	(0.1222781)	(0.0713166)	(0.0371631)

The practical effect of the addiction stock seems to dominate calculations of elasticity and lambda. Given its crude formation, negligible statistical significance, and minimal variation, it’s hard to accept the results. Meanwhile, the strong statistical significance of future consumption on current consumption suggests that there is in fact an addictive effect taking place. If the Rational Addiction model's interpretation is adhered to then, a negative addiction has been observed. However, Chaloupka's provision that both of the roots must be positive for a good to be addictive is violated; this likely because of the misbehavior of the Addictive Stock.

The reason that the coefficient for current price is not shown is because it exhibited autocorrelation with future price. However, given the extremely small size of the sample, and the fact that only two demographic groups were used to generate the price statistics, this is not very surprising. Also, we see an anomaly with a negative future price for the 13-22 year old group. Again, this is likely a result of the extremely small size of the sample examined $(\mathrm{N}=12)$. See Appendix 2 for the full results of the regressions.

The prices drawn from the full sample indicate a significant, negative relationship between playing WoW and working. Given that the large practical size of the coefficient for work ($50 \%-60 \%$) this supports the usage of the wage rate valuation model as a method of evaluating the opportunity cost for playing WoW, and also perhaps why we get similar values for the coefficient on Future Consumption. However, only accounting
for work suggests that $40 \%+$ of the opportunity cost is still unaccounted for, which is why the Time Valuation model warrants more investigation.

Ideal Research Plan

The empirical application of the Rational Addiction model and Time Valuation models presented here are less than desirable, as the former prefers long time series in order to understand trends in behavior and the latter requires a larger sample to break down demographically. Thus the first recommendation is to extend the period of observation beyond the two-period valuation presented in this paper, and develop a cohort whose time management behaviors are tracked on a monthly basis for a 1-2 year period. ${ }^{28}$ Preferably, the cohort would be developed at the release of a new MMO, in particular, one that draws in both veterans and new comers.

While there are some benefits afforded by doing in game interviews, in the end, the logistical hassle of tracking down sample members makes it a rather inefficient approach to the data collection process. Other lines of communication, such as email or web form, should be opened with cohort members so they may be contacted as necessary. This is particularly useful in scenarios where a cohort member may have decided to stop playing the game altogether. If the web form option were to chosen, giving subjects the ability to add additional fields for other time consuming activities could be a valuable way to ensure a more comprehensive data set with respect to time activities.

The Rational Addiction model is particularly useful in identifying addiction, and then quantifying it in the price elasticity. However, it tells us very little qualitative information about the addiction. While there are indications in this paper of addiction, neither the Rational Addiction model nor the Time Valuation model grant an understanding of why there is an addiction, least as they are used in this paper.

The desired qualitative information can, however, be inferred if there were a larger sample size and a higher resolution of demographic data. Cross sections could then be broken down by income level, age, membership to in game social institutions, and other demographic factors in order to get more precise valuations of time for each

[^14]group of users. Equation (24) could then be regressed using the more diversified price sample. The long-run price elasticity of demand could then be compared from group to group. We can then infer from the demographic groups with more inelastic demand properties of consumers to whom a good is particularly addictive. Given the proper demographic properties, such as the subject's preference particular game systems, what aspects of a game or product are particularly addictive could also be empirically tested.

Conclusion

Unfortunately, the dataset developed for this paper simply was not large enough to properly test the models described herein, particularly, the Time Valuation model. Regardless of the model employed though, there is a strong statistical relationship between consumption across various time periods suggests that there is some form of addiction taking place. However, there simply isn't enough data here to say definitively whether it is beneficial or harmful.

Appendix I

Proposal for Time Valuation Equilibrium Model

The regression model used to determine the relationship between $C_{W o W, t}$ and all other activities is actually a subset of the overall decision making process that I believe is going on. Not only are there relationships in the time valuation of $C_{W o W, t}$ versus all other activities, but we should expect that there such are relationships between all activities. Using the regression model used in this paper as an example, we should have a matrix of relationships such that:

Work $_{t}=\beta_{0}+\beta_{\text {Other }, t}$ Other $_{t}+\beta_{\text {WoW }, t} C_{\text {Wow }, t}+\beta_{\text {Sleep }}$ Sleep $_{t}+\beta_{\text {Eat }, t}$ Eat $_{t}+\beta_{\text {Hygiene }, t}$ Hygiene $_{t}$ (A3)
Sleep $_{t}=\beta_{0}+\beta_{\text {Other }, t}$ Other $_{t}+\beta_{\text {Work }, t \text { Work }_{t}+\beta_{\text {Wow }, t} C_{\text {WoW }, t}+\beta_{\text {Eat }, \text { Eat }_{t}}+\beta_{\text {Hygiene }, t} \text { Hygiene }_{t}(\text { A4 }) ~}^{\text {E }}$
Eat $_{t}=\beta_{0}+\beta_{\text {Other }, t}$ Other $_{t}+\beta_{\text {Work }, t}$ Work $_{t}+\beta_{\text {Sleep }}$ Sleep $_{t}+\beta_{\text {Wow }, t} C_{\text {WoW }, t}+\beta_{\text {Hygiene },}$ Hygiene $_{t}$ (A5)

If the model is comprehensive, then a shock to one of the variables should have a ripple effect on all other variables in the model. Eventually, the shock should settle down into an equilibrium determined by the matrix of coefficients. We would then start to explain shifts in general behavior using shifts in the coefficients that moved the equilibrium allocations of time. It is not clear that OLS is the best modeling technique for this kind of analysis; particularly given the possibility that beta could shift relative to the value of its related variable. ${ }^{29}$ A successful model will capture the relationships between all activities and allow the possibility for an equilibrium state.

[^15]
Appendix II

Appendix 2-A: Full Sample Regressions and Wage Rate Regressions
Appendix 2-B: 13-22 Price Regressions
Appendix 2-C: 23+ Price Regressions
Appendix 2-D: Time Valuation Regressions
Appendix 2-E: Dataset
Interpretations of column headers:
If a 0 or 1 appears at the end of a header, it means it is data from the initial or follow up interview,
respectively.
Date: Date of Interview
Time: Time of day of interview (military time, East Coast time)
Guilded: Whether the player was in a guild or not
Level: Level of Player
WoWP: How many hours per week spent in WoW
Other: How many hours per week spent on other leisure activities
Work: How many hours per week spent on work, school, etc.
Sleep: How many hours per day spent sleeping
Eat: How many minutes per day spent eating
Hygiene: How many minutes per day spent on showering, brushing teeth, etc.
Tobacco: How much tobacco per week is consumed (generally speaking, number of cigarettes per week)
Alcohol: How many alcoholic beverages are consumed per week
Caffeine: How many caffeinated beverages are consumed per week
PayPlan: What pay plan the player uses; $1=1$ month, $3=3$ month, $6=6$ month, GC $=$ Game Card, N/A $=$ did not know or opted not to respond
OtherMMO: How many months have been spent playing other MMOs
MMOD\#\#: Depreciated value of months. Depreciation rate is \#\#
Age: Self explanatory
M/F: Male or Female. If Male, then equal to 1 . If Female, then equal to 0.
WoWT: How many months the player has been subscribed to WoW
RLFriend: Equal to 1 if the player regularly plays with people s/he knows from real life
Addict: Equal to 1 if the player believes they are addicted to WoW.
Negative: Equal to 1 if the player believes their playing WoW has a negative impact on their life.
OtherChar: Equal to 1 if the player has other characters.
HighLVL: Equal to the highest level of all of the player] fs characters
Human: Equal to 1 if the character is Human.
Dwarf: Equal to 1 if the character is Dwarf
Gnome: Equal to 1 if the character is Gnome
NightElf: Equal to 1 if the character is Night Elf
Tauren: Equal to 1 if the character is Tauren
Troll: Equal to 1 if the character is Troll
Undead: Equal to 1 if the character is Undead
Orc: Equal to 1 if the character is Orc
Warrior: Equal to 1 if the character is Warrior
Hunter: Equal to 1 if the character is Hunter
Warlock: Equal to 1 if the character is Warlock
Priest: Equal to 1 if the character is Priest
Mage: Equal to 1 if the character is Mage
Rogue: Equal to 1 if the character is Rogue
Paladin: Equal to 1 if the character is Paladin
Shaman: Equal to 1 if the character is Shaman
Druid: Equal to 1 if the character is Druid
ServerNorm: Equal to 1 if the playerl fs server is Normal ruleset
ServerPVP: Equal to 1 if the player[fs server is PVP ruleset
SeverLow: Equal to 1 if the player] fs server has a light load level
SeverMed: Equal to 1 if the player■ fs server has a medium load level
SeverHigh: Equal to 1 if the player fs server has a high load level

Bibliography

1) George J. Stigler; Gary S. Becker. "De Gustibus Non Est Disputandam." The American Economic Review, Vol. 67, No. 2 (March, 1977), pg. 76-90.
2) Gary S. Becker; Kevin M. Murphy. "A Theory of Rational Addiction." The Journal of Political Economy, Vol. 96, No. 4, (August, 1988), pg. 675-700.
3) Frank Chaloupka. "Rational Addictive Behavior and Cigarette Smoking." The Journal of Political Economy, Vol. 99, No. 4, (August, 1991), pg. 722-744.
4) Bureau of Labor Services, http://www.bls.gov/cps/cpsaat37.pdf

Special Thanks

I'd like to offer my gratitude to Dmitri Williams (U of Illinois), Leo Mizuhara (U of Chicago), and Brendan Moore (Harvard) for their contributions in reviewing the work of this paper. I would also like to thank Professor Michael Greenstone (MIT) and Jessica Cohen (MIT) for allowing me to take on this project in class, and offering their support, understanding, and insight.

Appendix 2-A

Wednesday May 11 19:18:27 2005
Page 1

1 . regress wowp0 other0 work0 sleep0 eat0 hygiene0

Source	SS	$d f$	MS
Model	$\mathbf{4 7 7 4 . 4 4 6 1}$	$\mathbf{5}$	$\mathbf{9 5 4 . 8 8 9 2 2}$
Residual	$\mathbf{3 7 5 2 . 3 9 5 5 7}$	$\mathbf{2 4}$	$\mathbf{1 5 6 . 3 4 9 8 1 5}$
Total	$\mathbf{8 5 2 6 . 8 4 1 6 7}$	$\mathbf{2 9}$	$\mathbf{2 9 4 . 0 2 9 0 2 3}$

Number of obs $=$	30	
F $(5, \quad 24)$	$=$	$\mathbf{6 . 1 1}$
Prob $>$ F	$=$	$\mathbf{0 . 0 0 0 9}$
R-squared	$=$	0.5599
Adj R-squared	$=$	0.4683
Root MSE	$=$	$\mathbf{1 2 . 5 0 4}$

wowp0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
other0	-.5159615	.2355592	-2.19	0.038	-1.002132	-.0297912
work0	-.6757635	.1665718	-4.06	0.000	-1.019551	-.3319763
sleep0	-.0795984	.309199	-0.26	0.799	-.7177538	.5585569
eat0	-.8307665	.6096571	-1.36	0.186	-2.089037	.4275038
hygiene0	.5019455	.9799994	0.51	0.613	-1.520674	$\mathbf{2 . 5 2 4 5 6 5}$
_cons	65.97157	$\mathbf{1 8 . 4 9 1 7 6}$	3.57	0.002	$\mathbf{2 7 . 8 0 6 4 5}$	104.1367

2 . regress other0 wowp0 work0 sleep0 eat0 hygiene0

Source	SS	df	MS
Model Residual	$\mathbf{1 1 5 9 . 1 8 3 5 1}$	$\mathbf{5 3 4 8 . 2 8 3 1 5}$	$\mathbf{2 3 1 . 8 3 6 7 0 2}$
Total	$\mathbf{3 5 0 7 . 4 6 6 6 7}$	$\mathbf{2 9}$	$\mathbf{1 2 0 . 9 4 7 1 2 6}$

Number of obs	$=$	30
F $(5, \quad 24)$	$=$	2.37
Prob $>$ F	$=$	0.0698
R-squared	$=$	0.3305
Adj R-squared	$=$	0.1910
Root MSE	$=$	$\mathbf{9 . 8 9 1 7}$

other0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
wowp0	-.3228934	.1474151	-2.19	0.038	-.6271431	-.0186436
work0	-.3813189	.1523574	-2.50	0.020	-.6957691	-.0668686
sleep0	-.1611494	.24272	-0.66	0.513	-.6620989	.3398002
eat0	.5418332	.4882271	1.11	0.278	-.465818	1.549484
hygiene0	.459218	.7738277	0.59	0.558	-1.137884	$\mathbf{2 . 0 5 6 3 2}$
_cons	$\mathbf{4 1 . 3 1 6 0 8}$	$\mathbf{1 6 . 0 1 1 0 3}$	$\mathbf{2 . 5 8}$	$\mathbf{0 . 0 1 6}$	$\mathbf{8 . 2 7 0 9 3 7}$	$\mathbf{7 4 . 3 6 1 2 3}$

3 . regress work0 other0 wowp0 sleep0 eat0 hygiene0

Source	SS	df	MS
Model	$\mathbf{3 5 5 8 . 4 7 4 9 6}$	$\mathbf{5}$	$\mathbf{7 1 1 . 6 9 4 9 9 1}$
Residual	$\mathbf{3 3 4 2 . 7 0 0 0 4}$	$\mathbf{2 4}$	$\mathbf{1 3 9 . 2 7 9 1 6 8}$
Total	$\mathbf{6 9 0 1 . 1 7 5}$	$\mathbf{2 9}$	$\mathbf{2 3 7 . 9 7 1 5 5 2}$

Number of obs $=$	$\mathbf{3 0}$	
F (5, 24)	$=$	$\mathbf{5 . 1 1}$
Prob $>$ F	$=$	$\mathbf{0 . 0 0 2 5}$
R-squared	$=$	$\mathbf{0 . 5 1 5 6}$
Adj R-squared	$=$	$\mathbf{0 . 4 1 4 7}$
Root MSE	$=$	$\mathbf{1 1 . 8 0 2}$

work0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
other0	-.5427943	.2168755	-2.50	0.020	-.9904034	-.0951852
wowp0	-.6019821	.1483851	-4.06	0.000	-.9082338	-.2957303
sleep0	-.3375598	.2839949	-1.19	0.246	-.9236966	.248577
eat0	.2923947	.5942691	0.49	0.627	-.9341165	1.518906
hygiene0	-.2417065	.928686	-0.26	0.797	-2.15842	1.675007
_cons	$\mathbf{7 5 . 6 6 9 1 5}$	$\mathbf{1 5 . 0 8 5 7 2}$	5.02	0.000	44.53374	106.8046

Appendix 2-A

Wednesday May 11 19:18:27 2005 Page 2
4 . regress sleep0 work0 other0 wowp0 eat0 hygiene0

Source	SS	df	MS
Model	355.916686	5	$\mathbf{7 1 . 1 8 3 3 3 7 1}$
Residual	1630.8863	24	67.9535958
Total	1986.80299	29	68.5104478

Number of obs =		30
F($5, ~ 24)$	$=$	$\mathbf{1 . 0 5}$
Prob $>$	$=$	0.4132
R-squared	$=$	0.1791
Adj R-squared	$=$	0.0081
Root MSE	$=$	$\mathbf{8 . 2 4 3 4}$

sleep0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
work0	-.1646937	.1385597	-1.19	0.246	-.4506668	.1212794
other0	-.1119185	.1685694	-0.66	0.513	-.4598287	.2359917
wowp0	-.0345955	.1343857	-0.26	0.799	-.311954	.242763
eat0	.7070585	.3914211	1.81	0.083	-.1007948	1.514912
hygiene0	-.6809608	.6345512	-1.07	0.294	-1.99061	.6286884
_cons	53.84107	10.32709	5.21	0.000	32.527	75.15513

5 . regress eat0 sleep0 work0 other0 wowp0 hygiene0

Source	SS	df	MS	Number of obs =	30
				$F(5,24)=$	2.69
Model	218.878011	5	43.7756021	Prob $>$ F =	0.0456
Residual	390.446063	24	16.268586	R -squared	0.3592
				Adj R-squared =	0.2257
Total	609.324074	29	21.011175	Root MSE =	4.0334

eat0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
sleep0	.169275	.0937091	$\mathbf{1 . 8 1}$	0.083	-.024131	.3626809
work0	.0341533	.069414	0.49	0.627	-.10911	.1774167
other0	.0900899	.0811769	1.11	0.278	-.077451	.2576308
wowp0	-.0864433	.0634363	-1.36	0.186	-.2173695	.0444828
hygiene0	.3537445	.3095323	1.14	0.264	-.2850988	.9925877
_cons	-2.52273	7.361001	-0.34	0.735	-17.71509	12.66963

6 . regress hygiene0 eat0 sleep0 work0 other0 wowp0

Source	SS	df	MS	Number of obs =	30
				$F(5,24)=$	0.63
Model	21.0943347	5	4.21886694	Prob $>$ F =	0.6795
Residual	161.036511	24	6.70985462	R -squared	0.1158
				Adj R-squared =	-0.0684
Total	182. 130846	29	6.28037399	Root MSE =	2.5903

hygiene0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
eat0	.1458992	.1276642	1.14	0.264	-.1175868	.4093853
sleep0	-.0672392	.0626567	-1.07	0.294	-.1965563	.0620778
work0	-.0116444	.04474	-0.26	0.797	-.1039831	.0806944
other0	.0314915	.0530662	0.59	0.558	-.0780318	.1410147
wowp0	.0215413	.0420573	0.51	0.613	-.0652607	.1083433
_cons	6.882816	4.525859	1.52	0.141	-2.458099	16.22373

Appendix 2-A

Wednesday May 11 19:18:27 2005 Page 3
7 . regress wowp1 other1 work1 sleep1 eat1 hygiene1

Source	SS	df	MS
Model	$\mathbf{4 7 8 1 . 3 8 5 5 6}$	$\mathbf{5}$	$\mathbf{9 5 6 . 2 7 7 1 1 2}$
Residual	$\mathbf{2 9 7 2 . 9 1 4 4 4}$	$\mathbf{2 4}$	$\mathbf{1 2 3 . 8 7 1 4 3 5}$
Total	$\mathbf{7 7 5 4 . 3}$	$\mathbf{2 9}$	$\mathbf{2 6 7 . 3 8 9 6 5 5}$

Number of obs =		$\mathbf{3 0}$
F (5, 24)	$=$	$\mathbf{7 . 7 2}$
Prob $>$ F	$=$	$\mathbf{0 . 0 0 0 2}$
R-squared	$=$	$\mathbf{0 . 6 1 6 6}$
Adj R-squared	$=$	$\mathbf{0 . 5 3 6 7}$
Root MSE	$=$	$\mathbf{1 1 . 1 3}$

wowp1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
other1	.2639124	.1745279	1.51	0.144	-.0962955	.6241204
work1	-.7981174	.18983	-4.20	0.000	-1.189907	-.4063275
sleep1	-.3183178	.3278767	-0.97	0.341	-.9950221	.3583865
eat1	.5988475	.5574439	1.07	0.293	-.5516601	1.749355
hygiene1	.3100555	1.1176	0.28	0.784	-1.996557	2.616668
_cons	52.79867	18.33257	2.88	0.008	14.9621	90.63524

8 . regress other1 wowp1 work1 sleep1 eat1 hygiene1

Source	SS	df	MS	Number of obs =	30
Model	2948.55843	5	589.711687	$\begin{aligned} & \text { F(5, } \\ & \text { Prob }\end{aligned} \mathrm{F}^{24)}=$	3.81 0.0111
Residual	3712.94157	24	154.705899	R -squared	0.4426
				Adj R-squared =	0.3265
Total	6661.5	29	229.706897	Root MSE =	12.438

other1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
wowp1	.3296063	.217972	1.51	0.144	-.1202657	.7794784
work1	-.1321521	.278255	-0.47	0.639	-.7064423	.442138
sleep1	.2523414	.3699768	0.68	0.502	-.5112532	1.015936
eat1	.7752546	.6178304	1.25	0.222	-.4998847	2.050394
hygiene1	.7084169	1.242591	0.57	0.574	-1.856165	3.272999
_cons	-4.547577	$\mathbf{2 3 . 7 4 7 5 9}$	-0.19	0.850	-53.5602	44.46504

9 . regress work1 other1 wowp1 sleep1 eat1 hygiene1

Source	SS	df	MS	Number of obs =	30
Model	3669.85418	5	733.970837	F $(5,124)=$ Prob	8.90 0.0001
Residual	1979.51248	24	82.4796868	R -squared	0.6496
				Adj R -squared $=$	0.5766
Total	5649.36667	29	194.805747	Root MSE =	9.0818

work1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
other1	-.0704554	.1483485	-0.47	0.639	-.3766316	.2357209
wowp1	-.5314258	.1263981	-4.20	0.000	-.7922987	-.2705528
sleep1	-.5602347	.2476175	-2.26	0.033	-1.071292	-.0491774
eat1	.7443279	.4401971	1.69	0.104	-.1641943	1.65285
hygiene1	.9288224	.8935242	1.04	0.309	-.915321	$\mathbf{2 . 7 7 2 9 6 6}$
_cons	$\mathbf{6 4 . 0 2 1 5 7}$	$\mathbf{1 1 . 4 1 6 6 6}$	5.61	0.000	40.45874	$\mathbf{8 7 . 5 8 4 4}$

Appendix 2-A

Wednesday May 11 19:18:27 2005 Page 4
regress sleep1 work1 other1 wowp1 eat1 hygiene1

Source	SS	$d f$	MS
Model	1016.65846	5	203.331692
Residual	1108.71654	24	46.1965225
Total	2125.375	29	$\mathbf{7 3 . 2 8 8 7 9 3 1}$

Number of obs =		30
F($5, ~ 24)$	$=$	$\mathbf{4 . 4 0}$
Prob F	$=$	0.0055
R-squared	$=$	0.4783
Adj R-squared	$=$	0.3697
Root MSE	$=$	6.7968

sleep1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
work1	-.3137851	.1386895	-2.26	0.033	-.6000262	-.027544
other1	.0753513	.1104783	0.68	0.502	-.1526646	.3033673
wowp1	-.1187132	.1222781	-0.97	0.341	-.3710828	.1336564
eat1	.8600969	.3010607	2.86	0.009	.2387382	1.481456
hygiene1	-.2799356	.6812052	-0.41	0.685	-1.685874	1.126003
_cons	53.50111	7.027924	7.61	0.000	38.99619	68.00604

11 . regress eat1 sleep1 work1 other1 wowp1 hygiene1

Source	SS	df	MS	Number of obs =	30
				$F(5,24)=$	3.97
Model	314.961455	5	62.992291	Prob $>$ F =	0.0091
Residual	380.339927	24	15.847497	R-squared	0.4530
				Adj R-squared =	0.3390
Total	695.301382	29	23.9759097	Root MSE =	3.9809

eat1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
sleep1	.2950521	.1032774	2.86	0.009	.081898	.5082063
work1	.1430138	.0845787	1.69	0.104	-.031548	.3175756
other1	.0794142	.0632883	1.25	0.222	-.0512063	.2100347
wowp1	.0766136	.0713166	1.07	0.293	-.0705767	.2238038
hygiene1	.3822758	.3927061	0.97	0.340	-.4282297	1.192781
_cons	-15.45852	6.92099	-2.23	0.035	-29.74274	-1.174301

12 . regress hygiene1 eat1 sleep1 work1 other1 wowp1

Source	SS	df	MS	Number of obs =	30
				$F(5,24)=$	0.84
Model	17.3268907	5	3.46537815	Prob > F	0.5338
Residual	98.8571701	24	4.11904875	R-squared	0.1491
				Adj R-squared =	-0.0281
Total	116.184061	29	4.00634692	Root MSE =	2.0295

hygiene1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
eat1	.0993603	.1020714	0.97	0.340	-.1113046	.3100253
sleep1	-.0249601	.0607387	-0.41	0.685	-.1503186	.1003985
work1	.0463855	.0446227	1.04	0.309	-.0457113	.1384824
other1	.0188616	.033084	0.57	0.574	-.0494205	.0871437
wowp1	.0103102	.0371631	0.28	0.784	-.0663907	.087011
_cons	3.239149	3.821113	0.85	0.405	-4.647241	11.12554

Appendix 2-A

Wednesday May 11 19:18:27 2005 Page 5
. regress wowp0 wage wowp1 mmod100

Source	SS	df	MS
Model	$\mathbf{2 3 1 0 . 4 0 3 9 5}$	$\mathbf{2}$	$\mathbf{1 1 5 5 . 2 0 1 9 8}$
Residual	$\mathbf{6 2 1 6 . 4 3 7 7 1}$	$\mathbf{2 7}$	$\mathbf{2 3 0 . 2 3 8 4 3 4}$
Total	$\mathbf{8 5 2 6 . 8 4 1 6 7}$	$\mathbf{2 9}$	$\mathbf{2 9 4 . 0 2 9 0 2 3}$

Number of obs $=$	$\mathbf{3 0}$	
F $($ 2, 27$)$	$=$	$\mathbf{5 . 0 2}$
Prob $>$ F	$=$	$\mathbf{0 . 0 1 4 0}$
R-squared	$=$	0.2710
Adj R-squared	$=$	0.2170
Root MSE	$=$	$\mathbf{1 5 . 1 7 4}$

wowp0	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
wage	. 447293	. 65465	0.68	0.500	-. 8959377	1.790524
wowp1	. 5130349	. 1747731	2.94	0.007	. 15443	. 8716397
mmod100	(dropped)					
_cons	6.335401	10.26646	0.62	0.542	-14.72963	27.40043

14
. regress wowp0 wage wowp1 mmod80

Source	SS	df	MS
Model	$\mathbf{2 3 4 4 . 6 9 2 8 3}$	$\mathbf{3}$	$\mathbf{7 8 1 . 5 6 4 2 7 7}$
Residual	$\mathbf{6 1 8 2 . 1 4 8 8 4}$	$\mathbf{2 6}$	$\mathbf{2 3 7 . 7 7 4 9 5 5}$
Total	$\mathbf{8 5 2 6 . 8 4 1 6 7}$	$\mathbf{2 9}$	$\mathbf{2 9 4 . 0 2 9 0 2 3}$

Number of obs =	$\mathbf{3 0}$	
F $(3, \quad 26)$	$=$	$\mathbf{3 . 2 9}$
Prob $>$ F	$=$	$\mathbf{0 . 0 3 6 5}$
R-squared	$=$	0.2750
Adj R-squared	$=$	$\mathbf{0 . 1 9 1 3}$
Root MSE	$=$	$\mathbf{1 5 . 4 2}$

wowp0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
wage	.4103039	.672371	0.61	0.547	-.9717744	$\mathbf{1 . 7 9 2 3 8 2}$
wowp1	.5072329	.1782665	2.85	0.009	.1408009	.8736649
mmod80	$\mathbf{8 7 . 1 2 2 9 2}$	$\mathbf{2 2 9 . 4 2 4}$	0.38	0.707	-384.4649	558.7107
_cons	$\mathbf{- 1 0 1 . 5 2 2 5}$	$\mathbf{2 8 4 . 2 1 7 8}$	-0.36	0.724	-685.7406	482.6955

. regress wowp0 wage wowp1 mmod60

Source	SS	df	MS
Model	$\mathbf{2 3 2 2 . 4 4 3 3 3}$	$\mathbf{3}$	$\mathbf{7 7 4 . 1 4 7 7 7 7}$
Residual	$\mathbf{6 2 0 4 . 3 9 8 3}$	$\mathbf{2 6}$	$\mathbf{2 3 8 . 6 3 0 7 0 5}$
Total	$\mathbf{8 5 2 6 . 8 4 1 6 7}$	$\mathbf{2 9}$	$\mathbf{2 9 4 . 0 2 9 0 2 3}$

Number of obs $=$	$\mathbf{3 0}$	
F $(3,26)$	$=$	$\mathbf{3 . 2 4}$
Prob $>$ F	$=$	$\mathbf{0 . 0 3 8 1}$
R-squared	$=$	0.2724
Adj R-squared	$=$	0.1884
Root MSE	$=$	$\mathbf{1 5 . 4 4 8}$

wowp0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
wage	.4233148	.6749696	0.63	0.536	-.9641051	1.810735
wowp1	.5063002	.1804385	2.81	0.009	.1354036	.8771967
mmod60	$\mathbf{9 . 9 5 8 2 6 2}$	$\mathbf{4 4 . 3 3 4 7 9}$	0.22	0.824	-81.1732	101.0897
_cons	-9.503227	$\mathbf{7 1 . 2 8 4 9 3}$	-0.13	0.895	$\mathbf{- 1 5 6 . 0 3 1 5}$	137.0251

16 . log off
log: C:\Documents and Settings\nhunter\Desktop\WoWLog.smcl
log type: smcl
paused on: 11 May 2005, 15:49:02

[^16]
Appendix 2-A

Wednesday May 11 19:18:27 2005 Page 6
17
. regress wowp0 price0 price1 wowp1 mmod60

Source	SS	df	MS
Model	$\mathbf{2 2 2 8 . 5 8 2 4}$	$\mathbf{2}$	$\mathbf{1 1 1 4 . 2 9 1 2}$
Residual	$\mathbf{6 2 9 8 . 2 5 9 2 7}$	$\mathbf{2 7}$	$\mathbf{2 3 3 . 2 6 8 8 6 2}$
Total	$\mathbf{8 5 2 6 . 8 4 1 6 7}$	$\mathbf{2 9}$	$\mathbf{2 9 4 . 0 2 9 0 2 3}$

Number of obs $=$	$\mathbf{3 0}$	
F $(2,27)$	$\mathbf{4 . 7 8}$	
Prob $>$ F	$=$	$\mathbf{0 . 0 1 6 7}$
R-squared	$=$	0.2614
Adj R-squared	$=$	$\mathbf{0 . 2 0 6 6}$
Root MSE	$=$	$\mathbf{1 5 . 2 7 3}$

| wowp0 | Coef. | Std. Err. | t | $\mathrm{P}>\|\mathrm{t}\|$ | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| price0 | (dropped) | | | | | |
| price1 | (dropped) | | | | | |
| wowp1 | $\mathbf{5 2 1 7 4 9 3}$ | $\mathbf{. 1 7 6 7 2 9 5}$ | $\mathbf{2 . 9 5}$ | $\mathbf{0 . 0 0 6}$ | $\mathbf{. 1 5 9 1 3 0 3}$ | .8843683 |
| mmod60 | $\mathbf{1 4 . 3 5 5 8 7}$ | $\mathbf{4 3 . 2 8 2 1 7}$ | 0.33 | $\mathbf{0 . 7 4 3}$ | $\mathbf{- 7 4 . 4 5 1 8 1}$ | $\mathbf{1 0 3 . 1 6 3 6}$ |
| _cons | $\mathbf{- 1 0 . 6 8 9 2 5}$ | $\mathbf{7 0 . 4 5 4 7 2}$ | $\mathbf{- 0 . 1 5}$ | $\mathbf{0 . 8 8 1}$ | $\mathbf{- 1 5 5 . 2 5 0 4}$ | 133.8719 |

18
. regress wowp0 price0 price1 wowp1 mmod80

Source	SS	df				Number of obs = 30	
Model	2256.14875	2	112	7438		Prob > F	4.86 0.0158
Residual	6270.69291	27	232	7886		R -squared	0.2646
Total	8526.84167	29	294	9023		Root MSE	15.24
wowp0	Coef.	Std. Err.		t	$P>\|t\|$	[95\% Conf. Interval]	
price 0	(dropped)						
price1	(dropped)						
wowp1	. 5238129	. 1741241		3.01	0.006	. 1665398	. 8810861
mmod80	107.4047	224.35		0.48	0.636	-352.9234	567.7328
_cons	-120.9782	279.1222		-0.43	0.668		451.7331

. regress wowp0 price0 price1 wowp1 mmod100

Source	SS	df	MS
Model	$\mathbf{2 2 0 2 . 9 1 9 9 7}$	$\mathbf{1}$	$\mathbf{2 2 0 2 . 9 1 9 9 7}$
Residual	$\mathbf{6 3 2 3 . 9 2 1 7}$	$\mathbf{2 8}$	$\mathbf{2 2 5 . 8 5 4 3 4 6}$
Total	$\mathbf{8 5 2 6 . 8 4 1 6 7}$	$\mathbf{2 9}$	$\mathbf{2 9 4 . 0 2 9 0 2 3}$

Number of obs $=$	30	
F (1, 28$)$	$=$	$\mathbf{9 . 7 5}$
Prob $>$ F	$=$	0.0041
R-squared	$=$	0.2584
Adj R-squared	$=$	0.2319
Root MSE	$=$	$\mathbf{1 5 . 0 2 8}$

wowp0	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
price0	(dropped)					
price1	(dropped)					
wowp1	. 533001	. 1706644	3.12	0.004	. 1834109	. 8825912
mmod100	(dropped)					
_cons	12.63024	4.486613	2.82	0.009	3.439835	21.82066

20 . log off
log: C:\Documents and Settings\nhunter\Desktop\WoWLog.smcl
log type: smcl
paused on: 11 May 2005, 15:55:14

Appendix 2-B

Wednesday May 11 19:18:56 2005
Page 1

Statistics/Data Analysis
log: C:\Documents and Settings\nhunter\Desktop \backslash WoWLog13-22.smcl
log type: smcl
opened on: 11 May 2005, 17:00:02
1 . regress wowp0 other0 work0 sleep0 eat0 hygiene0

2 . regress other0 wowp0 work0 sleep0 eat0 hygiene0

Source	SS	df	MS
Model	$\mathbf{1 5 0 . 1 7 5 6 3 7}$	$\mathbf{5}$	$\mathbf{3 0 . 0 3 5 1 2 7 5}$
Residual	$\mathbf{9 0 3 . 5 5 3 5 2 9}$	$\mathbf{6}$	$\mathbf{1 5 0 . 5 9 2 2 5 5}$
Total	$\mathbf{1 0 5 3 . 7 2 9 1 7}$	$\mathbf{1 1}$	$\mathbf{9 5 . 7 9 3 5 6 0 6}$

Number of obs	$=$	$\mathbf{1 2}$
F $(5$,	$\mathbf{0 . 2 0}$	
Prob $>$ F	$=$	0.9512
R-squared	$=$	0.1425
Adj R-squared	$=$	$\mathbf{- 0 . 5 7 2 0}$
Root MSE	$=$	$\mathbf{1 2 . 2 7 2}$

other0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
wowp0	-.0626437	.4053249	-0.15	0.882	$\mathbf{- 1 . 0 5 4 4 3 8}$.9291504
work0	-.2906697	.3051458	-0.95	0.378	-1.037334	.4559951
sleep0	-.0200553	.5652897	-0.04	0.973	-1.403269	1.363159
eat0	.149749	$\mathbf{1 . 0 8 4 4 8 4}$	0.14	0.895	-2.503888	$\mathbf{2 . 8 0 3 3 8 6}$
hygiene0	-.4739109	$\mathbf{1 . 3 6 0 0 2 1}$	-0.35	0.739	-3.801762	$\mathbf{2 . 8 5 3 9 4 1}$
_cons	$\mathbf{3 5 . 4 1 5 8}$	$\mathbf{3 3 . 4 6 2 1 9}$	$\mathbf{1 . 0 6}$	$\mathbf{0 . 3 3 1}$	$\mathbf{- 4 6 . 4 6 3 2 4}$	$\mathbf{1 1 7 . 2 9 4 8}$

3 . regress work0 other0 wowp0 sleep0 eat0 hygiene0

Appendix 2-B

Wednesday May 11 19:18:57 2005 Page 2
4 . regress sleep0 work0 other0 wowp0 eat0 hygiene0

Source	SS	df	MS
Model	$\mathbf{2 5 3 . 8 7 5 5 5 7}$	$\mathbf{5}$	$\mathbf{5 0 . 7 7 5 1 1 1 5}$
Residual	$\mathbf{4 7 1 . 1 6 1 0 9 6}$	$\mathbf{6}$	$\mathbf{7 8 . 5 2 6 8 4 9 3}$
Total	$\mathbf{7 2 5 . 0 3 6 6 5 3}$	$\mathbf{1 1}$	$\mathbf{6 5 . 9 1 2 4 2 3}$

Number of obs =		$\mathbf{1 2}$
F (5,	$=$	$\mathbf{0 . 6 5}$
Prob $>$ F	$=$	$\mathbf{0 . 6 7 5 5}$
R-squared	$=$	$\mathbf{0 . 3 5 0 2}$
Adj R-squared	$=$	$\mathbf{0 . 1 9 1 4}$
Root MSE	$=$	$\mathbf{8 . 8 6 1 5}$

sleep0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
work0	.0307395	.236093	0.13	0.901	-.5469593	.6084384
other0	-.0104579	.2947722	-0.04	0.973	-.7317396	.7108238
wowp0	-.1223381	.2889901	-0.42	0.687	-.8294714	.5847953
eat0	.7766723	.7174238	1.08	0.321	-.9788004	2.532145
hygiene0	-.4447607	.9752232	-0.46	0.664	-2.831046	1.941525
_cons	48.21402	17.47733	2.76	0.033	5.448522	90.97951

5 . regress eat0 sleep0 work0 other0 wowp0 hygiene0

Source	SS	df	MS
Model	$\mathbf{6 1 . 8 6 8 8 9 4 1}$	$\mathbf{5}$	$\mathbf{1 2 . 3 7 3 7 7 8 8}$
Residual	$\mathbf{1 2 7 . 6 3 7 4 7 2}$	$\mathbf{6}$	$\mathbf{2 1 . 2 7 2 9 1 2}$
Total	$\mathbf{1 8 9 . 5 0 6 3 6 6}$	$\mathbf{1 1}$	$\mathbf{1 7 . 2 2 7 8 5 1 5}$

Number of obs $=$	12
F(5, 6)	0.58
Prob > F	0.7157
R -squared	0.3265
Adj R-squared	-0.2348
Root MSE	4.

eat0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
sleep0	.2104004	.19435	1.08	0.321	-.2651569	.6859577
work0	-.0244161	.1226509	-0.20	0.849	-.3245321	.2756998
other0	.0211538	.153196	0.14	0.895	-.3537034	.396011
wowp0	-.107248	.1462293	-0.73	0.491	-.4650581	.2505622
hygiene0	.0799811	.5152739	0.16	0.882	-1.180849	1.340811
_cons	-1.08405	13.69334	-0.08	0.939	-34.59046	$\mathbf{3 2 . 4 2 2 3 6}$

6 . regress hygiene0 eat0 sleep0 work0 other0 wowp0

Source	SS	df	MS	Number of obs =	12
Model	32.3768869	5	6.47537738		0.49
Residual	79.8013542	6	13.3002257	R-squared =	0.2886
				Adj R-squared =	-0.3042
Total	112.178241	11	10.1980219	Root MSE =	3.6469

hygiene0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
eat0	.0500057	.3221589	0.16	0.882	-.7382889	.8383002
sleep0	-.0753299	.1651752	-0.46	0.664	-.4794991	.3288393
work0	-.0568532	.0944919	-0.60	0.569	-.2880666	.1743602
other0	-.0418555	.1201163	-0.35	0.739	-.3357696	.2520585
wowp0	.0885135	.1151601	0.77	0.471	-.193273	.3703
_cons	$\mathbf{9 . 8 2 1 0 1 2}$	$\mathbf{1 0 . 0 6 3 8 2}$	0.98	0.367	-14.80426	$\mathbf{3 4 . 4 4 6 2 9}$

Appendix 2-B

Wednesday May 11 19:18:57 2005 Page 3
7 . regress wowp1 other1 work1 sleep1 eat1 hygiene1

Source	SS	df	MS
Model	$\mathbf{4 6 1 0 . 7 2 4 6 9}$	$\mathbf{5}$	$\mathbf{9 2 2 . 1 4 4 9 3 8}$
Residual	$\mathbf{4 0 8 . 0 0 4 4 7 6}$	$\mathbf{6}$	$\mathbf{6 8 . 0 0 0 7 4 6 1}$
Total	$\mathbf{5 0 1 8 . 7 2 9 1 7}$	$\mathbf{1 1}$	$\mathbf{4 5 6 . 2 4 8 1 0 6}$

Number of obs =		$\mathbf{1 2}$
F (5, 6$)$	$=$	$\mathbf{1 3 . 5 6}$
Prob $>$ F	$=$	$\mathbf{0 . 0 0 3 2}$
R-squared	$=$	$\mathbf{0 . 9 1 8 7}$
Adj R-squared	$=$	$\mathbf{0 . 8 5 1 0}$
Root MSE	$=$	$\mathbf{8 . 2 4 6 3}$

wowp1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
other1	.7210206	.1923718	3.75	0.010	.2503037	1.191737
work1	-.4082191	.2465255	-1.66	0.149	-1.011445	.1950071
sleep1	.114005	.4111013	0.28	0.791	-.8919237	1.119934
eat1	.0475733	.6686883	0.07	0.946	-1.588648	1.683795
hygiene1	.1768917	2.17877	0.08	0.938	-5.154367	5.508151
_cons	5.63819	24.95996	0.23	0.829	-55.43663	66.71301

8 . regress other1 wowp1 work1 sleep1 eat1 hygiene1

Source	SS	df	MS	Number of obs =	12
Model	4018.48034	5	803.696068	$\begin{aligned} & \text { F(5, } \\ & \text { Prob } \end{aligned}$	8.77 0.0099
Residual	549.936327	6	91.6560545	R -squared	0.8796
				Adj R-squared	0.7793
Total	4568.41667	11	415.310606	Root MSE	9.5737

other1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
wowp1	.9718408	.2592919	3.75	0.010	.3373764	1.606305
work1	.1911606	.3365435	0.57	0.591	-.6323315	1.014653
sleep1	.0361778	.4801012	0.08	0.942	-1.138588	1.210943
eat1	.0078149	.7766528	0.01	0.992	-1.892586	1.908216
hygiene1	.7564841	2.511979	0.30	0.773	-5.390106	6.903075
_cons	-2.46422	29.08351	-0.08	0.935	-73.629	68.70056

9 . regress work1 other1 wowp1 sleep1 eat1 hygiene1

Source	SS	df	MS	Number of obs =	12
Model	1650.05193	5	330.010385	$\begin{aligned} & \text { F }(5, \\ & \text { Prob }>\text { F } \end{aligned}=$	$\begin{array}{r} 2.58 \\ 0.1401 \end{array}$
Residual	767.948073	6	127.991346	R -squared	0.6824
Total	2418	11	219.818182	$\begin{array}{cl}\text { Adj R-squared } & = \\ \text { Root MSE } & =\end{array}$	$\begin{aligned} & 0.4177 \\ & 11.313 \end{aligned}$

work1	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
other1	. 2669426	. 4699597	0.57	0.591	-. 8830073	1.416892
wowp1	-. 7683519	. 4640115	-1.66	0.149	-1.903747	. 3670434
sleep1	-. 0676614	. 5669347	-0.12	0.909	-1.454901	1.319578
eat1	-. 0812081	. 9171846	-0.09	0.932	-2.325478	2.163062
hygiene1	. 0261013	2.990753	0.01	0.993	-7.292009	7.344211
_cons	44.96086	29.08044	1.55	0.173	-26.19641	116.1181

Appendix 2-B

Wednesday May 11 19:18:57 2005 Page 4
10
. regress sleep1 work1 other1 wowp1 eat1 hygiene1

Source	SS	df	MS
Model	$\mathbf{8 1 5 . 4 8 0 9 3 8}$	$\mathbf{5}$	$\mathbf{1 6 3 . 0 9 6 1 8 8}$
Residual	$\mathbf{3 9 7 . 2 6 9 0 6 2}$	$\mathbf{6}$	$\mathbf{6 6 . 2 1 1 5 1 0 3}$
Total	$\mathbf{1 2 1 2 . 7 5}$	$\mathbf{1 1}$	$\mathbf{1 1 0 . 2 5}$

Number of obs $=$	$\mathbf{1 2}$	
F (5, 6$)$	$=$	$\mathbf{2 . 4 6}$
Prob $>$ F	$=$	$\mathbf{0 . 1 5 1 5}$
R-squared	$=$	$\mathbf{0 . 6 7 2 4}$
Adj R-squared	$=$	$\mathbf{0 . 3 9 9 4}$
Root MSE	$=$	$\mathbf{8 . 1 3 7}$

sleep1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
work1	-.0350021	.2932824	-0.12	0.909	-.7526381	.682634
other1	.0261345	.3468208	0.08	0.942	-.8225054	.8747745
wowp1	.1110053	.4002844	0.28	0.791	-.8684554	1.090466
eat1	1.072621	.493957	2.17	0.073	-.1360484	2.28129
hygiene1	-1.560945	2.054537	-0.76	0.476	-6.588216	3.466327
_cons	46.80826	15.70341	2.98	0.025	$\mathbf{8 . 3 8 3 4 0 2}$	$\mathbf{8 5 . 2 3 3 1 2}$

11 . regress eat1 sleep1 work1 other1 wowp1 hygiene1

Source	SS	df	MS
Model	$\mathbf{2 6 5 . 7 9 7 9 2 5}$	$\mathbf{5}$	$\mathbf{5 3 . 1 5 9 5 8 5}$
Residual	$\mathbf{1 5 1 . 9 4 9 7 6 2}$	$\mathbf{6}$	$\mathbf{2 5 . 3 2 4 9 6 0 3}$
Total	$\mathbf{4 1 7 . 7 4 7 6 8 7}$	$\mathbf{1 1}$	$\mathbf{3 7 . 9 7 7 0 6 2 4}$

Number of obs =	$\mathbf{1 2}$	
F $(5, \quad 6)$	$=$	$\mathbf{2 . 1 0}$
Prob $>$ F	$=$	0.1965
R-squared	$=$	0.6363
Adj R-squared	$=$	0.3332
Root MSE	$=$	$\mathbf{5 . 0 3 2 4}$

eat1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
sleep1	.4102622	.1889315	2.17	0.073	-.0520366	.872561
work1	-.0160682	.1814784	-0.09	0.932	-.4601298	.4279934
other1	.0021593	.2145925	0.01	0.992	-.5229296	.5272482
wowp1	.0177173	.2490341	0.07	0.946	-.5916471	.6270818
hygiene1	.7807634	$\mathbf{1 . 2 9 1 6 0 6}$	0.60	0.568	-2.379682	$\mathbf{3 . 9 4 1 2 0 8}$
_cons	$\mathbf{- 1 5 . 3 8 2 6 3}$	$\mathbf{1 3 . 9 4 8 2 7}$	$\mathbf{- 1 . 1 0}$	$\mathbf{0 . 3 1 2}$	-49.51281	18.74756

12 . regress hygiene1 eat1 sleep1 work1 other1 wowp1

hygiene1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
eat1	.0735247	.1216309	0.60	0.568	-.2240953	.3711447
sleep1	-.0562233	.0740019	-0.76	0.476	-.2372996	.1248529
work1	.0004863	.0557266	0.01	0.993	-.1358718	.1368444
other1	.0196835	.0653608	0.30	0.773	-.1402487	.1796156
wowp1	.0062038	.0764118	0.08	0.938	-.1807692	.1931767
_cons	6.101071	$\mathbf{3 . 9 7 8 8 4 7}$	1.53	0.176	-3.634817	15.83696

13 . log close
log: C:\Documents and Settings\nhunter\Desktop\WoWLog13-22.smcl log type: smcl
closed on: 11 May 2005, 17:04:30

Appendix 2-C

Wednesday May 11 19:19:45 2005
Page 1

Statistics/Data Analysis
log: C:\Documents and Settings\nhunter\Desktop\WoWLog23+.smcl
log type: smcl
opened on: 11 May 2005, 17:05:32
1 . regress wowp0 other0 work0 sleep0 eat0 hygiene0

Source	SS	$d f$	MS
Model Residual	$\mathbf{4 8 0 4 . 0 4 9 3 3}$	$\mathbf{5 0 1 3 . 8 9 5 1 1}$	$\mathbf{9 6 0 . 8 0 9 8 6 6}$
Total	$\mathbf{6 8 1 7 . 9 4 4 4 4}$	$\mathbf{1 6 7 . 8 2 4 5 9 3}$	
$\mathbf{1 7}$	$\mathbf{4 0 1 . 0 5 5 5 5 6}$		

Number of obs $=$	$\mathbf{1 8}$	
F $(5, \quad 12)$	$=$	$\mathbf{5 . 7 3}$
Prob $>$ F	$=$	$\mathbf{0 . 0 0 6 3}$
R-squared	$=$	$\mathbf{0 . 7 0 4 6}$
Adj R-squared	$=$	$\mathbf{0 . 5 8 1 5}$
Root MSE	$=$	$\mathbf{1 2 . 9 5 5}$

wowp0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
other0	-.5421831	.368679	-1.47	0.167	$\mathbf{- 1 . 3 4 5 4 6 6}$.2610994
work0	-.7895263	.228807	-3.45	0.005	-1.288054	-.2909988
sleep0	.0865908	.4806621	0.18	0.860	-.9606819	1.133864
eat0	-1.026065	.9698693	-1.06	0.311	-3.139228	1.087099
hygiene0	.7013706	1.884332	0.37	0.716	-3.404236	4.806977
_cons	$\mathbf{6 6 . 1 4 6 1 8}$	$\mathbf{2 6 . 0 0 4 6 5}$	$\mathbf{2 . 5 4}$	0.026	9.486922	122.8054

2 . regress other0 wowp0 work0 sleep0 eat0 hygiene0

Source	SS	df	MS
Model	$\mathbf{1 3 2 1 . 4 7 4 5 5}$	$\mathbf{5}$	$\mathbf{2 6 4 . 2 9 4 9 0 9}$
Residual	$\mathbf{1 0 4 6 . 1 5 0 4 5}$	$\mathbf{1 2}$	$\mathbf{8 7 . 1 7 9 2 0 4 6}$
Total	$\mathbf{2 3 6 7 . 6 2 5}$	$\mathbf{1 7}$	$\mathbf{1 3 9 . 2 7 2 0 5 9}$

Number of obs	$=$	$\mathbf{1 8}$
F $(5, \quad 12)$	$=$	$\mathbf{3 . 0 3}$
Prob $>$ F	$=$	$\mathbf{0 . 0 5 3 6}$
R-squared	$=$	0.5581
Adj R-squared	$=$	0.3740
Root MSE	$=$	$\mathbf{9 . 3 3 7}$

other0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
wowp0	-.2816458	.1915163	$\mathbf{- 1 . 4 7}$	0.167	-.6989239	.1356323
work0	-.4463987	.1938392	-2.30	0.040	-.868738	-.0240595
sleep0	-.4204533	.3249742	$\mathbf{- 1 . 2 9}$	0.220	$\mathbf{- 1 . 1 2 8 5 1 1}$.2876047
eat0	.8943224	.683782	1.31	0.215	-.5955107	$\mathbf{2 . 3 8 4 1 5 6}$
hygiene0	$\mathbf{1 . 5 2 8 5 8 1}$	$\mathbf{1 . 2 9 2 6 9 2}$	$\mathbf{1 . 1 8}$	0.260	-1.287954	4.345116
_cons	$\mathbf{4 3 . 6 8 5 5 7}$	19.5359	$\mathbf{2 . 2 4}$	0.045	$\mathbf{1 . 1 2 0 5 0 2}$	$\mathbf{8 6 . 2 5 0 6 4}$

3 . regress work0 other0 wowp0 sleep0 eat0 hygiene0

Source	SS	df	MS
Model	$\mathbf{3 3 4 6 . 9 9 1 5 4}$	$\mathbf{5}$	$\mathbf{6 6 9 . 3 9 8 3 0 8}$
Residual	1609.0779	$\mathbf{1 2}$	$\mathbf{1 3 4 . 0 8 9 8 2 5}$
Total	$\mathbf{4 9 5 6 . 0 6 9 4 4}$	$\mathbf{1 7}$	$\mathbf{2 9 1 . 5 3 3 4 9 7}$

Number of obs $=$		$\mathbf{1 8}$
F (5, 12)	$=$	$\mathbf{4 . 9 9}$
Prob $>$ F	$=$	$\mathbf{0 . 0 1 0 5}$
R-squared	$=$	$\mathbf{0 . 6 7 5 3}$
Adj R-squared	$=$	$\mathbf{0 . 5 4 0 1}$
Root MSE	$=$	$\mathbf{1 1 . 5 8}$

work0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
other0	-.6866033	.2981429	-2.30	0.040	$\mathbf{- 1 . 3 3 6 2 0 1}$	$\mathbf{- . 0 3 7 0 0 5 7}$
wowp0	-.630822	.182814	-3.45	0.005	-1.02914	-.2325045
sleep0	-.462391	.4089953	-1.13	0.280	$\mathbf{- 1 . 3 5 3 5 1 5}$.4287331
eat0	.4249857	.8981161	0.47	0.645	-1.531841	$\mathbf{2 . 3 8 1 8 1 3}$
hygiene0	.6786974	1.682658	0.40	0.694	-2.9875	4.344895
_cons	$\mathbf{7 8 . 5 8 8 7 6}$	$\mathbf{1 7 . 8 0 2 9 5}$	$\mathbf{4 . 4 1}$	0.001	$\mathbf{3 9 . 7 9 9 4 6}$	$\mathbf{1 1 7 . 3 7 8 1}$

Appendix 2-C

Wednesday May 11 19:19:46 2005 Page 2
4 . regress sleep0 work0 other0 wowp0 eat0 hygiene0

Source	SS	df	MS	Number of obs =	18
Model	375.25533	5	75.0510659	$\begin{aligned} & F(5,12)= \\ & \text { Prob }>F^{12}= \end{aligned}$	1.24 0.3486
Residual	724.440782	12	60.3700652	R -squared	0.3412
Total	1099.69611	17	64.6880066	$\begin{array}{cl}\text { Adj R-squared } & = \\ \text { Root MSE } & =\end{array}$	$\begin{aligned} & 0.0668 \\ & 7.7698 \end{aligned}$

sleep0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
work0	-.2081782	.1841383	$\mathbf{- 1 . 1 3}$	0.280	-.6093811	.1930247
other0	-.2911565	.2250389	$\mathbf{- 1 . 2 9}$	0.220	-.7814742	.1991612
wowp0	.0311485	.1729044	0.18	0.860	-.3455777	.4078748
eat0	$\mathbf{1 . 0 1 3 3 4 6}$.533252	1.90	0.082	-.14851	$\mathbf{2 . 1 7 5 2 0 3}$
hygiene0	.3003435	$\mathbf{1 . 1 3 3 3 5 5}$	0.27	0.796	$-\mathbf{2 . 1 6 9 0 2 5}$	$\mathbf{2 . 7 6 9 7 1 2}$
_cons	$\mathbf{4 6 . 2 0 6 3 9}$	$\mathbf{1 4 . 0 1 7 7 4}$	$\mathbf{3 . 3 0}$	0.006	15.66436	$\mathbf{7 6 . 7 4 8 4 3}$

5 . regress eat0 sleep0 work0 other0 wowp0 hygiene0

Source	SS	df	MS	Number of obs =	18
Model	231.623658	5	46.3247315		3.41 0.0380
Residual	163.193085	12	13.5994238	R -squared	0.5867
				Adj R-squared	0.4144
Total	394.816743	17	23.2245143	Root MSE =	3.6877

eat0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
sleep0	.2282742	.1201244	1.90	0.082	-.0334545	.4900028
work0	.0431022	.0910872	0.47	0.645	-.1553597	.241564
other0	.1395088	.1066658	1.31	0.215	-.092896	.3719137
wowp0	-.0831457	.078592	-1.06	0.311	-.2543828	.0880915
hygiene0	.4336394	.5247647	0.83	0.425	-.7097247	1.577003
_cons	-5.670948	9.03681	-0.63	0.542	-25.36046	14.01857

6 . regress hygiene0 eat0 sleep0 work0 other0 wowp0

Source	SS	df	MS	Number of obs =	18
Model	21.4102354	5	4.28204707		1.10 0.4098
Residual	46.7256639	12	3.89380533	R -squared =	0.3142
				Adj R-squared =	0.0285
Total	68.1358993	17	4.00799408	Root MSE =	1.9733

hygiene0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
eat0	.1241602	.1502513	0.83	0.425	-.2032093	.4515298
sleep0	.0193718	.0731002	0.27	0.796	-.1398998	.1786435
work0	.0197085	.0488624	0.40	0.694	-.0867534	.1261705
other0	.0682731	.0577373	1.18	0.260	-.0575257	.1940719
wowp0	.0162729	.0437196	0.37	0.716	-.0789839	.1115297
_cons	1.46356	4.896014	0.30	0.770	-9.203939	12.13106

Appendix 2-C

Wednesday May 11 19:19:46 2005
Page 3
7 . - preserve
8 . regress wowp1 other1 work1 sleep1 eat1 hygiene1

Source	SS	df	MS
Model	$\mathbf{1 6 7 3 . 8 1 4 8 2}$	$\mathbf{5}$	$\mathbf{3 3 4 . 7 6 2 9 6 5}$
Residual	$\mathbf{9 5 9 . 7 5 4 6 2 1}$	$\mathbf{1 2}$	$\mathbf{7 9 . 9 7 9 5 5 1 7}$
Total	$\mathbf{2 6 3 3 . 5 6 9 4 4}$	$\mathbf{1 7}$	$\mathbf{1 5 4 . 9 1 5 8 5}$

Number of obs $=$	$\mathbf{1 8}$	
F (5, 12)	$=$	$\mathbf{4 . 1 9}$
Prob $>$ F	$=$	$\mathbf{0 . 0 1 9 6}$
R-squared	$=$	$\mathbf{0 . 6 3 5 6}$
Adj R-squared	$=$	$\mathbf{0 . 4 8 3 7}$
Root MSE	$=$	$\mathbf{8 . 9 4 3 1}$

wowp1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
other1	-.5959005	.4163247	-1.43	0.178	-1.502994	.3111931
work1	-.9721088	.2470058	-3.94	0.002	-1.510288	-.4339295
sleep1	-.9587412	.5027412	-1.91	0.081	-2.05412	.1366379
eat1	1.107657	.8033209	1.38	0.193	-.6426286	2.857943
hygiene1	.5965549	1.189192	0.50	0.625	-1.994473	3.187583
_cons	98.28094	26.80281	3.67	0.003	39.88263	156.6792

9 . regress other1 wowp1 work1 sleep1 eat1 hygiene1

Source	SS	$d f$	MS
Model	$\mathbf{5 9 8 . 7 9 6 6 7 3}$	$\mathbf{5}$	$\mathbf{1 1 9 . 7 5 9 3 3 5}$
Residual	$\mathbf{3 9 4 . 1 4 7 7 7 1}$	$\mathbf{1 2}$	$\mathbf{3 2 . 8 4 5 6 4 7 6}$
Total	$\mathbf{9 9 2 . 9 4 4 4 4 4}$	$\mathbf{1 7}$	$\mathbf{5 8 . 4 0 8 4 9 6 7}$

Number of obs	$=$	$\mathbf{1 8}$
F $(5, \quad 12)$	$=$	$\mathbf{3 . 6 5}$
Prob $>$ F	$=$	0.0308
R-squared	$=$	0.6031
Adj R-squared	$=$	0.4377
Root MSE	$=$	$\mathbf{5 . 7 3 1 1}$

other1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
wowp1	-.2447218	.1709744	-1.43	0.178	-.6172429	.1277994
work1	-.516153	.1876045	-2.75	0.018	-.9249082	-.1073978
sleep1	-.8448289	.2752762	-3.07	0.010	-1.444604	-.2450537
eat1	1.304654	.4064034	3.21	0.007	.4191775	2.190131
hygiene1	1.25536	.6794265	1.85	0.089	-.2249831	2.735703
_cons	59.45311	18.19434	3.27	0.007	19.81106	99.09517

. regress work1 other1 wowp1 sleep1 eat1 hygiene1

Source	SS	$d f$	MS
Model	$\mathbf{2 5 2 7 . 3 5 3 6 3}$	$\mathbf{5}$	$\mathbf{5 0 5 . 4 7 0 7 2 6}$
Residual	$\mathbf{5 7 2 . 2 5 7 4 7 9}$	$\mathbf{1 2}$	$\mathbf{4 7 . 6 8 8 1 2 3 3}$
Total	$\mathbf{3 0 9 9 . 6 1 1 1 1}$	$\mathbf{1 7}$	$\mathbf{1 8 2 . 3 3 0 0 6 5}$

Number of obs	$=$	$\mathbf{1 8}$
F $(5, \quad 12)$	$=$	$\mathbf{1 0 . 6 0}$
Prob $>$ F	$=$	$\mathbf{0 . 0 0 0 4}$
R-squared	$=$	$\mathbf{0 . 8 1 5 4}$
Adj R-squared	$=$	0.7385
Root MSE	$=$	$\mathbf{6 . 9 0 5 7}$

work1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
other1	-.7493951	.2723803	-2.75	0.018	-1.342861	-.1559293
wowp1	-.5796237	.1472782	-3.94	0.002	-.9005153	-.2587322
sleep1	-1.136875	.2977712	-3.82	0.002	-1.785663	-.488087
eat1	1.49279	.5099387	2.93	0.013	.3817294	2.603851
hygiene1	1.407603	.8341344	1.69	0.117	-.4098198	3.225026
_cons	92.24588	14.11299	6.54	0.000	61.49632	122.9954

Appendix 2-C

Wednesday May 11 19:19:46 2005 Page 4
11 . regress sleep1 work1 other1 wowp1 eat1 hygiene1

Source	SS	df	MS
Model	$\mathbf{4 2 4 . 7 8 2 5 3 4}$	$\mathbf{5}$	$\mathbf{8 4 . 9 5 6 5 0 6 7}$
Residual	$\mathbf{2 4 2 . 8 4 2 4 6 6}$	$\mathbf{1 2}$	$\mathbf{2 0 . 2 3 6 8 7 2 2}$
Total	$\mathbf{6 6 7 . 6 2 5}$	$\mathbf{1 7}$	$\mathbf{3 9 . 2 7 2 0 5 8 8}$

Number of obs $=$	$\mathbf{1 8}$	
F (5, 12)	$=$	$\mathbf{4 . 2 0}$
Prob $>$ F	$=$	$\mathbf{0 . 0 1 9 4}$
R-squared	$=$	$\mathbf{0 . 6 3 6 3}$
Adj R-squared	$=$	$\mathbf{0 . 4 8 4 7}$
Root MSE	$=$	$\mathbf{4 . 4 9 8 5}$

sleep1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
work1	-.4824428	.1263618	-3.82	0.002	-.7577615	-.207124
other1	-.5205163	.1696033	-3.07	0.010	-.89005	-.1509825
wowp1	-.242586	.1272064	-1.91	0.081	-.519745	.0345729
eat1	.9878836	.3283706	3.01	0.011	.2724255	1.703342
hygiene1	.8713283	.5495994	1.59	0.139	-.3261459	$\mathbf{2 . 0 6 8 8 0 2}$
_cons	$\mathbf{6 2 . 8 7 1 6 3}$	$\mathbf{7 . 4 8 5 6 6 7}$	$\mathbf{8 . 4 0}$	0.000	$\mathbf{4 6 . 5 6 1 7 6}$	$\mathbf{7 9 . 1 8 1 5}$

12 . regress eat1 sleep1 work1 other1 wowp1 hygiene1

Source	SS	df	MS	Number of obs =	18
Model	170.523594	5	34.1047188	$\begin{aligned} & \text { F(5, } \\ & \text { Prob } \end{aligned}$	3.83 0.0264
Residual	106.986545	12	8.91554546	R-squared =	0.6145
				Adj R-squared	0.4538
Total	277.51014	17	16.3241259	Root MSE	2.9859

eat1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
sleep1	.4352215	.1446668	3.01	0.011	.1200196	.7504233
work1	.279085	.0953357	2.93	0.013	.0713663	.4868037
other1	.3541323	.1103132	3.21	0.007	.1137806	.5944841
wowp1	.1234737	.0895484	1.38	0.193	-.0716356	.3185829
hygiene1	-.3239422	.3901326	-0.83	0.423	-1.173968	.5260838
_cons	-27.55467	10.32168	-2.67	0.020	-50.04367	-5.065664

13 . regress hygiene1 eat1 sleep1 work1 other1 wowp1

Source	SS	df	MS	Number of obs	18
Model	34.2771362	5	6.85542723	$\begin{aligned} & \text { F(5, } \\ & \text { Prob }>F^{12)}= \\ & = \end{aligned}$	1.49 0.2655
Residual	55.3938289	12	4.61615241	R -squared	0.3823
				Adj R-squared	0.1249
Total	89.6709651	17	5.27476265	Root MSE	2.1485

hygiene1	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
eat1	-.1677257	.2019968	-0.83	0.423	-.607839	.2723875
sleep1	.1987552	.1253669	1.59	0.139	-.0743958	.4719063
work1	.1362543	.0807432	1.69	0.117	-.0396701	.3121786
other1	.1764293	.0954871	1.85	0.089	-.0316193	.3844778
wowp1	.0344312	.0686362	0.50	0.625	-.1151143	.1839766
_cons	-10.39763	$\mathbf{8 . 8 8 3 2 2 3}$	$\mathbf{- 1 . 1 7}$	$\mathbf{0 . 2 6 5}$	-29.75251	$\mathbf{8 . 9 5 7 2 4 7}$

14 . log close
log: C:\Documents and Settings\nhunter\Desktop\WoWLog23+.smcl
log type: smcl
closed on: 11 May 2005, 17:08:59

Appendix 2-D

Wednesday May 11 19:22:26 2005
Page 1

log: C:\Documents and Settings\nhunter\Desktop\WoWLogTimePrice.smcl log type: smcl
opened on: 11 May 2005, 17:24:28
1 . regress wowp0 price0 price1 wowp1 mmod80

Source	SS	df		Number of obs = 30		
Model	2341.67791	3780	59304		F $(3,26)=$ Prob	$\begin{array}{r} 3.28 \\ 0.0367 \end{array}$
Residual	6185.16375	26237	0914		R -squared	0.2746
Total	8526.84167	29294	29023		Adj R-squared Root MSE	$\begin{aligned} & 0.1909 \\ & 15.424 \end{aligned}$
wowp0	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
price0	(dropped)	4.645137		0.554	$4-6.76295$	12.33348
price1	2.785266		0.60			
wowp1	. 5122935	. 1772709	2.89	0.008	. 147908	. 876679
mmod80	100.1197	227.384	0.44	0.663	-367.2748	567.5142
_cons	-112.8054	282.8214	-0.40	0.693	-694.1532	468.5424

2 . regress wowp0 price0 price1 wowp1 mmod60

Source	SS	$d f$	MS
Model	$\mathbf{2 3 1 4 . 7 3 0 5 3}$	$\mathbf{3}$	$\mathbf{7 7 1 . 5 7 6 8 4 4}$
Residual	$\mathbf{6 2 1 2 . 1 1 1 3}$	$\mathbf{2 6}$	$\mathbf{2 3 8 . 9 2 7 3 5 1}$
Total	$\mathbf{8 5 2 6 . 8 4 1 6 7}$	$\mathbf{2 9}$	$\mathbf{2 9 4 . 0 2 9 0 2 3}$

Number of obs $=$	30	
F (3,	$\mathbf{3 6}$ 26)	$=$
Prob $>$ F	$=$	$\mathbf{0 . 0 3 8 7}$
R-squared	$=$	0.2715
Adj R-squared	$=$	$\mathbf{0 . 1 8 7 4}$
Root MSE	$=$	$\mathbf{1 5 . 4 5 7}$

wowp0	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
price0	(dropped)					
price1	$\mathbf{2 . 7 9 8 7 1 5}$	$\mathbf{4 . 6 6 0 8 8 9}$	0.60	0.553	$\mathbf{- 6 . 7 8 1 8 7 9}$	$\mathbf{1 2 . 3 7 9 3 1}$
wowp1	.5110483	.1797458	$\mathbf{2 . 8 4}$	0.009	.1415756	.880521
mmod60	12.44165	$\mathbf{4 3 . 9 1 9 8 3}$	0.28	0.779	-77.83685	102.7202
_cons	$-\mathbf{8 . 4 7 3 6 4 2}$	$\mathbf{7 1 . 3 9 9 5 3}$	$\mathbf{- 0 . 1 2}$	0.906	$\mathbf{- 1 5 5 . 2 3 7 5}$	138.2902

3

log close log:	C:\Documents and Settings\nhunter\Desktop\WoWLogTimePrice
log type:	smcl
closed on:	11 May 2005, 17:25:16

Appendix 2-E

Appendix 2-E

[^0]: ${ }^{1}$ For example, one of the progenitors of the genre, EverQuest, has maintained the nickname "EverCrack" for most of its 6 year history. Also, it is not uncommon to hear new releases to be referred to as a new form of "crack."

[^1]: ${ }^{2}$ Although it does play a part in determining utility valuations
 ${ }^{3}$ This example is borrowed from $\mathrm{B} \& \mathrm{M}$ (1988)
 ${ }^{4}$ Becker and Murphy (1988) refers to the addictive stock as "consumption capital"

[^2]: ${ }^{5}$ Chaloupka (1991), pg. 727
 ${ }^{6}$ So that utility is separable over time in C, A, and Y

[^3]: ${ }^{7} U_{A}=\frac{\partial U(t)}{\partial A(t)}$
 ${ }^{8}$ Chaloupka (1991), pg. 728

[^4]: ${ }^{9}$ For example, a person that is the member of a social organization called a guild can send a message to the guild's chat channel. Any member of the guild, no matter where they are in the game world, will receive the message.

[^5]: ${ }^{10}$ Chaloupka, 1991, pg. 729

[^6]: ${ }^{11}$ To explain a person returning to a product they put down, it is simply a matter that the marginal utility per cost of all other activities has sunk below that of the product that's being returned to.
 ${ }_{12} \frac{P_{Y, i}}{t}$ is the initial purchase cost for obtaining access to Good Y

[^7]: ${ }^{13}$ This may invalidate some of the assumptions made to obtain Chaloupka's shadow price in Equation (9), namely, the ignoring of the allocation of time over the lifetime. Suggestions for how to resolve this logic problem are welcomed.

[^8]: ${ }^{14}$ See Appendix I for more details

[^9]: ${ }^{15} \beta_{\text {ActivityB,ActivityA,t }}$ is representative of the combined effects of the partial derivative of the indifference curve for ActivityB with respect to Activity A and the partial derivative of the budget constraint for ActivityB with respect to ActivityA
 ${ }^{16}$ In the Appendix, see Proposal for Time Valuation Equilibrium Model for a slightly more detailed discussion of the thought process behind how net-changes are balanced

[^10]: ${ }^{17}$ For example, if sample members report on average 160 of the 168 (95%) hours in a week, then basket comprehensiveness is less likely to be a problem than if they only report on average 84 of the 168 (50\%) hours in a week. The latter suggests that some major activities were excluded from survey.
 ${ }^{18}$ i.e. increase the consumption of WoW by subtracting $P_{\text {Wow,Activity }}(t) \frac{A_{t}}{T_{t}}$ from each of the activities,
 ${ }^{19}$ i.e. In our weighted average, in general $\mid \Delta$ Activity $\left|<\left|\Delta C_{\text {Wow,t }}\right|\right.$
 ${ }^{20}$ i.e. In our weighted average, in general $\mid \Delta$ Activity $\left|>\left|\Delta C_{\text {Wow,t }}\right|\right.$
 ${ }^{21}$ A negative price essentially suggests that WoW is generally complementary to all other activities, which would result in consuming more

[^11]: ${ }^{22}$ The response rate of subjects was approximately 50\%
 ${ }^{23}$ This question was necessary to avoid violating WoW’s End User License Agreement, which only permits one unsolicited communication between a player and any other player.
 ${ }^{24}$ Logged On/Off: A Player is logged on to a game when they are playing the game. A Player is Logged Off when they are not currently in the game.

[^12]: ${ }^{25}$ i.e. all 13-22 year olds will have the same $P(0)$ and $P(1)$, and all 23+ will have the same $P(0)$ and $P(1)$ ${ }^{26}$ Chaloupka (1991), pg. 730

[^13]: ${ }^{27}$ As a proxy for C* we will be using the sample's semi quartile average. For the price, the overall average wage is used for the Wage Rate Valuation model, and the future price is used to evaluate the Time Valuation model.

[^14]: ${ }^{28}$ The size of the cohort and the length of the study are of course up to the researcher, but of course, the more people in the cohort and the longer the period of observation, the more reliable the results.

[^15]: ${ }^{29}$ For example, a person would be more willing to give up 10 minutes of eating time if they had 2 hours allocated towards eating when compared to a person that only had 15 minutes allocated to eating

[^16]: log: C:\Documents and Settings\nhunter\Desktop\WoWLog.smcl
 log type: smcl
 resumed on: 11 May 2005, 15:53:28

