Problem Set 4

1. Let X_1, \ldots, X_n be iid Poisson (λ) and let λ have a Gamma (α, β) distribution (the conjugate family for Poisson)

$$\pi(\lambda) = \lambda^{\alpha - 1} \frac{\exp\{-\lambda/\beta\}}{\Gamma(\alpha)\beta^{\alpha}}$$

- (a) Find the posterior distribution for λ .
- (b) Calculate posterior mean and variance. *Hint:* mean of Gamma (α, β) is $\alpha\beta$; the variance is $\alpha\beta^2$.
- (c) Discuss whether the prior vanishes asymptotically.
- (d) Assume that α is an integer. Show that the posterior for $\frac{2(n\beta+1)}{\beta}\lambda$ given X is $\chi^2(2(\alpha + \Sigma X_i))$.
- (e) Using result of (d), suggest a 95%-credible interval for λ .
- 2. Suppose that conditional on τ a random variable X has normal distribution with mean zero and variance $\frac{1}{\tau}$. The prior for τ is Gamma (α, β) .
 - (a) Find the posterior for τ .
 - (b) Compare the prior mean for τ and the posterior mean.
- 3. Let X be a random variable with exponential distribution

$$f(x \mid \beta) = \frac{1}{\beta} e^{-y/\beta} \quad ; x > 0, \ \beta > 0.$$

One wants to test $H_0: \beta = \beta_0$ against $H_a: \beta \neq \beta_0$.

- (a) Suggest a 5% level test.
- (b) Draw the power function.
- (c) Provide the formula for the *p*-value.

14.381 Statistical Method in Economics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.