Problem Set 4

1. Let X_{1}, \ldots, X_{n} be iid Poisson (λ) and let λ have a Gamma (α, β) distribution (the conjugate family for Poisson)

$$
\pi(\lambda)=\lambda^{\alpha-1} \frac{\exp \{-\lambda / \beta\}}{\Gamma(\alpha) \beta^{\alpha}}
$$

(a) Find the posterior distribution for λ.
(b) Calculate posterior mean and variance. Hint: mean of Gamma (α, β) is $\alpha \beta$; the variance is $\alpha \beta^{2}$.
(c) Discuss whether the prior vanishes asymptotically.
(d) Assume that α is an integer. Show that the posterior for $\frac{2(n \beta+1)}{\beta} \lambda$ given X is $\chi^{2}\left(2\left(\alpha+\Sigma X_{i}\right)\right)$.
(e) Using result of (d), suggest a 95%-credible interval for λ.
2. Suppose that conditional on τ a random variable X has normal distribution with mean zero and variance $\frac{1}{\tau}$. The prior for τ is Gamma (α, β).
(a) Find the posterior for τ.
(b) Compare the prior mean for τ and the posterior mean.
3. Let X be a random variable with exponential distribution

$$
f(x \mid \beta)=\frac{1}{\beta} e^{-y / \beta} \quad ; x>0, \beta>0 .
$$

One wants to test $H_{0}: \beta=\beta_{0}$ against $H_{a}: \beta \neq \beta_{0}$.
(a) Suggest a 5% level test.
(b) Draw the power function.
(c) Provide the formula for the p-value.

MIT OpenCourseWare
http://ocw.mit.edu

14.381 Statistical Method in Economics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

