Problem Set 5

- 1. Let X_1, \ldots, X_n be iid Poisson (λ) .
 - (a) Find the UMP test for $H_0: \lambda \leq \lambda_0$ vs. $H_1: \lambda > \lambda_0$
 - (b) Consider the specific case $H_0 : \lambda_1 \leq 1$ vs. $H_1 : \lambda > 1$. Determine the sample size n so that the UMP satisfies two conditions:

$$P_{\lambda=1}$$
(reject H_0) ≈ 0.05
 $P_{\lambda=2}$ (reject H_0) ≈ 0.9

Here " \approx " stays for " approximately equal". Please, use the CLT as approximation device.

- 2. Suppose that we have two independent samples: X_1, \ldots, X_n are iid exponential(θ) and Y_1, \ldots, Y_m are iid exponential(μ). Both θ and μ are unknown. We want to test $H_0: \mu = \theta$ vs $H_1: \mu \neq \theta$. The goal of this problem is to write down a LR test statistic.
 - (a) Write down the likelihood function and find the unrestricted ML estimates of μ and θ
 - (b) Find the restricted ML estimate (via imposing the null)
 - (c) Write down LR test statistic
 - (d) Show that it's a function of test statistic $\frac{\sum_i X_i}{\sum_i X_i + \sum_j Y_j}$
- 3. Let X_1, X_2, \ldots, X_N be a sequence of independent and identically distributed random variables with common probability function

$$f_X(x \mid \theta_0) = \frac{\theta_0(-\ln \theta_0)^x}{x!}$$

for $x = 0, 1, 2, \ldots$ for some unknown $0 < \theta_0 < 1$.

- (a) Find the maximum likelihood estimator for θ_0 .
- (b) Suppose that N = 100, $\sum_{i=1}^{N} x_i = 500$. Test the hypothesis that $\theta_0 = e^{-4}$ against the hypothesis that $\theta_0 \neq e^{-4}$ at the 5% level using a likelihood ratio test.
- (c) Test the hypothesis that $\theta_0 = e^{-4}$ against the hypothesis that $\theta_0 \neq e^{-4}$ at the 5% level using Rao's score test (also known as a Lagrange multiplier test).
- (d) Test the hypothesis that $\theta_0 = e^{-4}$ against the hypothesis that $\theta_0 \neq e^{-4}$ at the 5% level using a Wald test.

14.381 Statistical Method in Economics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.