Lecture 1
 Distributions and Normal Random Variables

1 Random variables

1.1 Basic Definitions

Given a random variable X, we define a cumulative distribution function (cdf), $F_{X}: \mathbb{R} \rightarrow[0,1]$, such that $F_{X}(t)=P\{X \leq t\}$ for all $t \in \mathbb{R}$. Here $P\{X \leq t\}$ denotes the probability that $X \leq t$. To emphasize that random variable X has cdf F_{X}, we write $X \sim F_{X}$. Note that $F_{X}(t)$ is a nondecreasing function of t.

There are 3 types of random variables: discrete, continuous, and mixed.
Discrete random variable, X, is characterized by a list of possible values, $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$, and their probabilities, $p=\left\{p_{1}, \ldots, p_{n}\right\}$, where p_{i} denotes the probability that X will take value x_{i}, i.e. $p_{i}=P\left\{X=x_{i}\right\}$ for all $i=1, \ldots, n$. Note that $p_{1}+\ldots+p_{n}=1$ and $p_{i} \geq 0$ for all $i=1, \ldots, n$ by definition of probability. Then the cdf of X is given by $F_{X}(t)=\sum_{j=1, \ldots, n: x_{j} \leq t} p_{j}$.

Continuous random variable, Y, is characterized by its probability density function (pdf), $f_{Y}: \mathbb{R} \rightarrow \mathbb{R}$, such that $P\{a<Y \leq b\}=\int_{a}^{b} f_{Y}(s) d s$. Note that $\int_{-\infty}^{+\infty} f_{Y}(s) d s=1$ and $f_{Y}(s) \geq 0$ for all $s \in \mathbb{R}$ by definition of probability. Then the $c d f$ of Y is given by $F_{Y}(t)=\int_{-\infty}^{t} f_{Y}(s) d s$. By the Fundamental Theorem of Calculus, $f_{Y}(t)=d F_{Y}(t) / d t$.

A random variable is referred to as mixed if it is not discrete and not continuous.
If cdf F of some random variable X is strictly increasing and continuous then it has inverse, $q(x)=$ $F^{-1}(x)$. It is defined for all $x \in(0,1)$. Note that

$$
P\{X \leq q(x)\}=P\left\{X \leq F^{-1}(x)\right\}=F\left(F^{-1}(x)\right)=x
$$

for all $x \in(0,1)$. Therefore $q(x)$ is called the x-quantile of X. It is such a number that random variable X takes a value smaller or equal to this number with probability x. If F is not strictly increasing or continuous, then we define $q(x)$ as a generalized inverse of F, i.e. $q(x)=\inf \{t \in \mathbb{R}: F(t) \geq x\}$ for all $x \in(0,1)$. In other words, $q(x)$ is a number such that $F(q(x)+\varepsilon)>x$ and $F(q(x)-\varepsilon) \leq x$ for any $\varepsilon>0$. As an exercise, check that $P\{X \leq q(x)\} \geq x$.

1.2 Functions of Random Variables

Suppose we have random variable X and function $g: \mathbb{R} \rightarrow \mathbb{R}$. Then we can define another random variable $Y=g(X)$. The cdf of Y can be calculated as follows

$$
F_{Y}(t)=P\{Y \leq t\}=P\{g(X) \leq t\}=P\left\{X \in g^{-1}(-\infty, t]\right\}
$$

where g^{-1} may be the set-valued inverse of g. The set $g^{-1}(-\infty, t]$ consists of all $s \in \mathbb{R}$ such that $g(s) \in$ $(-\infty, t]$, i.e. $g(s) \leq t$. If g is strictly increasing and continuously differentiable then it has strictly increasing and continuously differentiable inverse g^{-1} defined on set $g(\mathbb{R})$. In this case $P\left\{X \in g^{-1}(-\infty, t]\right\}=P\{X \leq$ $\left.g^{-1}(t)\right\}=F_{X}\left(g^{-1}(t)\right)$ for all $t \in g(\mathbb{R})$. If, in addition, X is a continuous random variable, then
$f_{Y}(t)=\frac{d F_{Y}(t)}{d t}=\frac{d F_{X}\left(g^{-1}(t)\right)}{d t}=\left.\left.\left(\frac{d F_{X}(s)}{d s}\right)\right|_{s=g^{-1}(t)}\left(\frac{d g(s)}{d s}\right)^{-1}\right|_{s=g^{-1}(t)}=\left.f_{X}\left(g^{-1}(t)\right)\left(\frac{d g(s)}{d s}\right)^{-1}\right|_{s=g^{-1}(t)}$
for all $t \in g(\mathbb{R})$. If $t \notin g(\mathbb{R})$, then $f_{Y}(t)=0$.
One important type of function is a linear transformation. If $Y=X-a$ for some $a \in \mathbb{R}$, then

$$
F_{Y}(t)=P\{Y \leq t\}=P\{X-a \leq t\}=P\{X \leq t+a\}=F_{X}(t+a)
$$

In particular, if X is continuous, then Y is also continuous with $f_{Y}(t)=f_{X}(t+a)$. If $Y=b X$ with $b>0$, then

$$
F_{Y}(t)=P\{b X \leq t\}=P\{X \leq t / b\}=F_{X}(t / b)
$$

In particular, if X is continuous, then Y is also continuous with $f_{Y}(t)=f_{X}(t / b) / b$.

1.3 Expected Value

Informally, the expected value of some random variable can be interpreted as its average. Formally, if X is a random variable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is some function, then, by definition,

$$
E[g(X)]=\sum_{i} g\left(x_{i}\right) p_{i}
$$

for discrete random variables and

$$
E[g(X)]=\int_{-\infty}^{+\infty} g(x) f_{X}(x) d x
$$

for continuous random variables.
Expected values for some functions g deserve special names:

- mean: $g(x)=x, E[X]$
- second moment: $g(x)=x^{2}, E\left[X^{2}\right]$
- variance: $g(x)=(x-E[X])^{2}, E\left[(X-E[X])^{2}\right]$
- k-th moment: $g(x)=x^{k}, E\left[X^{k}\right]$
- k-th central moment: $E\left[(X-E X)^{k}\right]$

The variance of random variable X is commonly denoted by $V(X)$.

1.3.1 Properties of expectation

1) For any constant a (non-random), $E[a]=a$.
2) The most useful property of an expectation is its linearity: if X and Y are two random variables and a and b are two constants, then $E[a X+b Y]=a E[X]+b E[Y]$.
3)If X is a random variable, then $V(X)=E\left[X^{2}\right]-(E[X])^{2}$. Indeed,

$$
\begin{aligned}
V(X) & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}-2 X E[X]+(E[X])^{2}\right] \\
& =E\left[X^{2}\right]-E[2 X E[X]]+E\left[(E[X])^{2}\right] \\
& =E\left[X^{2}\right]-2 E[X] E[X]+(E[X])^{2} \\
& =E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

4) If X is a random variable and a is a constant, then $V(a X)=a^{2} V(X)$ and $V(X+a)=V(X)$.

1.4 Examples of Random Variables

Discrete random variables:

- $\operatorname{Bernoulli}(p)$: random variable X has $\operatorname{Bernoully}(p)$ distribution if it takes values from $\mathcal{X}=\{0,1\}$, $P\{X=0\}=1-p$ and $P\{X=1\}=p$. Its expectation $E[X]=1 \cdot p+0 \cdot(1-p)=p$. Its second moment $E\left[X^{2}\right]=1^{2} \cdot p+0^{2} \cdot(1-p)=p$. Thus, its variance $V(X)=E\left[X^{2}\right]-(E[X])^{2}=p-p^{2}=p(1-p)$. Notation: $X \sim \operatorname{Bernoulli}(p)$.
- $\operatorname{Poisson}(\lambda):$ random variable X has a $\operatorname{Poisson}(\lambda)$ distribution if it takes values from $\mathcal{X}=\{0,1,2, \ldots\}$ and $P\{X=j\}=e^{-\lambda} \lambda^{j} / j!$. As an exercise, check that $E[X]=\lambda$ and $V(X)=\lambda$. Notation: $X \sim$ Poisson ($\lambda\}$.

Continuous random variables:

- Uniform (a, b) : random variable X has a $\operatorname{Uniform}(a, b)$ distribution if its density $f_{X}(x)=1 /(b-a)$ for $x \in(a, b)$ and $f_{X}(x)=0$ otherwise. Notation: $X \sim U(a, b)$.
- $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$: random variable X has a $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution if its density $f_{X}(x)=\exp (-(x-$ $\left.\mu)^{2} /\left(2 \sigma^{2}\right)\right) /(\sqrt{2 \pi} \sigma)$ for all $x \in \mathbb{R}$. Its expectation $E[X]=\mu$ and its variance $V(X)=\sigma^{2}$. Notation: $X \sim N\left(\mu, \sigma^{2}\right)$. As an exercise, check that if $X \sim N\left(\mu, \sigma^{2}\right)$, then $Y=(X-\mu) / \sigma \sim N(0,1) . Y$ is said to have a standard normal distribution. It is known that the cdf of $N\left(\mu, \sigma^{2}\right)$ is not analytical, i.e. it can not be written as a composition of simple functions. However, there exist tables that give
its approximate values. The cdf of a standard normal distribution is commonly denoted by Φ, i.e. if $Y \sim N(0,1)$, then $F_{Y}(t)=P\{Y \leq t\}=\Phi(t)$.

2 Bivariate (multivariate) distributions

2.1 Joint, marginal, conditional

If X and Y are two random variables, then $F_{X, Y}(x, y)=P\{X \leq x, Y \leq y\}$ denotes their joint cdf. X and Y are said to have joint pdf $f_{X, Y}$ if $f_{X, Y}(x, y) \geq 0$ for all $x, y \in \mathbb{R}$ and $F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(s, t) d t d s$. Under some mild regularity conditions (for example, if $f_{X, Y}(x, y)$ is continuous),

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}
$$

From the joint pdf $f_{X, Y}$ one can calculate the pdf of, say, X. Indeed,

$$
F_{X}(x)=P\{X \leq x\}=\int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(s, t) d t d s
$$

Therefore $f_{X}(s)=\int_{-\infty}^{+\infty} f(s, t) d t$. The pdf of X is called marginal to emphasize that it comes from a joint pdf of X and Y.

If X and Y have a joint pdf, then we can define a conditional pdf of Y given $X=x$ (for x such that $\left.f_{X}(x)>0\right): f_{Y \mid X}(y \mid x)=f_{X, Y}(x, y) / f_{X}(x)$. Conditional probability is a full characterization of how Y is distributed for any given given $X=x$. The probability that $Y \in A$ for some set A given that $X=x$ can be calculated as $P\{Y \in A \mid X=x\}=\int_{A} f_{Y \mid X}(y \mid x) d y$. In a similar manner we can calculate the conditional expectation of Y given $X=x: E[Y \mid X=x]=\int_{-\infty}^{+\infty} y f_{Y \mid X}(y \mid x) d y$. As an exercise, think how we can define the conditional distribution of Y given $X=x$ if X and Y are discrete random variables.

One extremely useful property of a conditional expectation is the law of iterated expectations: for any random variables X and Y,

$$
E[E[Y \mid X=x]]=E[Y] .
$$

2.2 Independence

Random variables X and Y are said to be independent if $f_{Y \mid X}(y \mid x)=f_{Y}(y)$ for all $x \in \mathbb{R}$, i.e. if the marginal pdf of Y equals conditional pdf Y given $X=x$ for all $x \in \mathbb{R}$. Note that $f_{Y \mid X}(y \mid x)=f_{Y}(y)$ if and only if $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$. If X and Y are independent, then $g(X)$ and $f(Y)$ are also independent for any functions $g: \mathbb{R} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$. In addition, if X and Y are independent, then $E[X Y]=E[X] E[Y]$.

Indeed,

$$
\begin{aligned}
E[X Y] & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f_{X, Y}(x, y) d x d y \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{+\infty} x f_{X}(x) d x \int_{-\infty}^{+\infty} y f_{Y}(y) d y \\
& =E[X] E[Y]
\end{aligned}
$$

2.3 Covariance

For any two random variables X and Y we can define covariance as

$$
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]
$$

As an exercise, check that $\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]$.
Covariances have several useful properties:

1. $\operatorname{cov}(X, Y)=0$ whenever X and Y are independent
2. $\operatorname{cov}(a X, b Y)=a b \operatorname{cov}(X, Y)$ for any random variables X and Y and any constants a and b
3. $\operatorname{cov}(X+a, Y)=\operatorname{cov}(X, Y)$ for any random variables X and Y and any constant a
4. $\operatorname{cov}(X, Y)=\operatorname{cov}(Y, X)$ for any random variables X and Y
5. $|\operatorname{cov}(X, Y)| \leq \sqrt{V(X) V(Y)}$ for any random variables X and Y
6. $V(X, Y)=V(X)+V(Y)+2 \operatorname{cov}(X, Y)$ for any random variables X and Y
7. $V\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} V\left(X_{i}\right)$ whenever X_{1}, \ldots, X_{n} are independent

To prove property 5, consider random variable $X-a Y$ with $a=\operatorname{cov}(X, Y) / V(X)$. On the one hand, its variance $V(X-a Y) \geq 0$. On the other hand,

$$
\begin{aligned}
V(X-a Y) & =V(X)-2 a \operatorname{cov}(X, Y)+a^{2} V(Y) \\
& =V(X)-2(\operatorname{cov}(X, Y))^{2} / V(Y)+\left(\operatorname{cov}(X, Y)^{2} / V(Y)\right.
\end{aligned}
$$

Thus, the last expression is nonnegative as well. Multiplying it by $V(Y)$ yields the result.
The correlation of two random variables X and Y is defined by $\operatorname{corr}(X, Y)=\operatorname{cov}(X, Y) / \sqrt{V(X) V(Y)}$. By property 5 as before, $|\operatorname{corr}(X, Y)| \leq 1$. If $|\operatorname{corr}(X, Y)|=1$, then X and Y are linearly dependent, i.e. there exist constants a and b such that $X=a+b Y$.

3 Normal Random Variables

Let us begin with the definition of a multivariate normal distribution. Let Σ be a positive definite $n \times n$ matrix. Remember that the $n \times n$ matrix Σ is positive definite if $a^{T} \Sigma a>0$ for any non-zero $n \times 1$ vector a. Here superindex T denotes transposition. Let μ be $n \times 1$ vector. Then $X \sim N(\mu, \Sigma)$ if X is continuous and its pdf is given by

$$
f_{X}(x)=\frac{\exp \left(-(x-\mu)^{T} \Sigma^{-1}(x-\mu) / 2\right)}{(2 \pi)^{n / 2} \sqrt{\operatorname{det}(\Sigma)}}
$$

for any $n \times 1$ vector x.
A normal distribution has several useful properties:

1. if $X \sim N(\mu, \Sigma)$, then $\Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$ for any $i, j=1, \ldots, n$ where $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$
2. if $X \sim N(\mu, \Sigma)$, then $\mu_{i}=E\left[X_{i}\right]$ for any $i=1, \ldots, n$
3. if $X \sim N(\mu, \Sigma)$, then any subset of components of X is normal as well. In particular, $X_{i} \sim N\left(\mu_{i}, \Sigma_{i i}\right)$
4. if X and Y are uncorrelated normal random variables, then X and Y are independent. As an exercise, check this statement
5. if $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right), Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, and X and Y are independent, then $X+Y \sim N\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$
6. Any linear combination of normals is normal. That is, if $X \sim N(\mu, \Sigma)$ is an $n \times 1$ dimensional normal vector, and A is a fixed $k \times n$ full-rank matrix with $k \leq n$, then $Y=A X$ is a normal $k \times 1$ vector: $Y \sim N\left(A \mu, A \Sigma A^{T}\right)$.

3.1 Conditional distribution

Another useful property of a normal distribution is that its conditional distribution is normal as well. If

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]\right)
$$

then $X_{1} \mid X_{2}=x_{2} \sim N(\tilde{\mu}, \tilde{\Sigma})$ with $\tilde{\mu}=\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right)$ and $\tilde{\Sigma}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$. If X_{1} and X_{2} are both random variables (as opposed to random vectors), then $E\left[X_{1} \mid X_{2}=x_{2}\right]=\mu_{1}+\operatorname{cov}\left(X_{1}, X_{2}\right)\left(x_{2}-\mu_{2}\right) / V\left(X_{2}\right)$. Let us prove the last statement. Let

$$
\Sigma=\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{12} & \sigma_{22}
\end{array}\right]
$$

be the covariance matrix of 2×1 normal random vector $X=\left(X_{1}, X_{2}\right)^{T}$ with mean $\mu=\left(\mu_{1}, \mu_{2}\right)^{T}$. Note that $\Sigma_{12}=\Sigma_{21}=\sigma_{12}$ since $\operatorname{cov}\left(X_{1}, X_{2}\right)=\operatorname{cov}\left(X_{1}, X_{2}\right)$. From linear algebra, we know that $\operatorname{det}(\Sigma)=\sigma_{11} \sigma_{22}-\sigma_{12}^{2}$ and

$$
\Sigma^{-1}=\frac{1}{\operatorname{det}(\Sigma)}\left[\begin{array}{cc}
\sigma_{22} & -\sigma_{12} \\
-\sigma_{12} & \sigma_{11}
\end{array}\right]
$$

Thus the pdf of X is

$$
f_{X}\left(x_{1}, x_{2}\right)=\frac{\exp \left\{-\left[\left(x_{1}-\mu_{1}\right)^{2} \sigma_{22}+\left(x_{2}-\mu_{2}\right)^{2} \sigma_{11}-2\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) \sigma_{12}\right] /(2 \operatorname{det}(\Sigma)\}\right.}{2 \pi \sqrt{\operatorname{det}(\Sigma)}},
$$

and the pdf of X_{2} is

$$
f_{X_{2}}\left(x_{2}\right)=\frac{\exp \left\{-\left(x_{2}-\mu_{2}\right)^{2} /\left(2 \sigma_{22}\right)\right\}}{\sqrt{2 \pi \sigma_{22}}} .
$$

Note that

$$
\frac{\sigma_{11}}{\operatorname{det}(\Sigma)}-\frac{1}{\sigma_{22}}=\frac{\sigma_{11} \sigma_{22}-\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right)}{\operatorname{det}(\Sigma) \sigma_{22}}=\frac{\sigma_{12}^{2}}{\operatorname{det}(\Sigma) \sigma_{22}}
$$

Therefore the conditional pdf of X_{1}, given $X_{2}=x_{2}$, is

$$
\begin{aligned}
f_{X_{1} \mid X_{2}}\left(x_{1} \mid X_{2}=x_{2}\right) & =\frac{f_{X}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)} \\
& =\frac{\exp \left\{-\left[\left(x_{1}-\mu_{1}\right)^{2} \sigma_{22}+\left(x_{2}-\mu_{2}\right)^{2} \sigma_{12}^{2} / \sigma_{22}-2\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) \sigma_{12}\right] /(2 \operatorname{det}(\Sigma))\right\}}{\sqrt{2 \pi} \sqrt{\operatorname{det}(\Sigma) / \sigma_{22}}} \\
& =\frac{\exp \left\{-\left[\left(x_{1}-\mu_{1}\right)^{2}+\left(x_{2}-\mu_{2}\right)^{2} \sigma_{12}^{2} / \sigma_{22}^{2}-2\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) \sigma_{12} / \sigma_{22}\right] /\left(2 \operatorname{det}(\Sigma) / \sigma_{22}\right)\right\}}{\sqrt{2 \pi} \sqrt{\operatorname{det}(\Sigma) / \sigma_{22}}} \\
& =\frac{\exp \left\{-\left[x_{1}-\mu_{1}-\left(x_{2}-\mu_{2}\right) \sigma_{12} / \sigma_{22}\right]^{2} /\left(2 \operatorname{det}(\Sigma) / \sigma_{22}\right)\right\}}{\sqrt{2 \pi} \sqrt{\operatorname{det}(\Sigma) / \sigma_{22}}} \\
& =\frac{\exp \left\{-\left(x_{1}-\tilde{\mu}\right)^{2} /(2 \tilde{\sigma})\right\}}{\sqrt{2 \pi} \sqrt{\tilde{\sigma}}},
\end{aligned}
$$

where $\tilde{\mu}=\mu_{1}+\left(x_{2}-\mu_{2}\right) \sigma_{12} / \sigma_{22}$ and $\tilde{\sigma}=\operatorname{det}(\Sigma) / \sigma_{22}$. Note, that the last expression equals the pdf of a normal random variable with mean $\tilde{\mu}$ and variance $\tilde{\sigma}$ yields the result.

MIT OpenCourseWare
http://ocw.mit.edu

14.381 Statistical Method in Economics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

