
Econometrics in R

Grant V. Farnsworth∗

Initial Version: April, 2004
This Version: March 24, 2014

∗Althogh I originally wrote this document as an introduction to R for econometrics students, it is now primarily a personal
reference. It’s easier for me to search here for things I’ve picked up over the years than to figure them out again. Since I learned
R largely by trial-and-error, there could be errors, inefficiencies, or omissions here. If you find something here suboptimal or
have suggestions, please let me know. I can be contacted at my gmail email account. My username on that system is gvfarns.

Contents
1 Introductory Comments 3

1.1 What is R? . 3
1.2 How is R Better Than Other Statistical Software? . 3
1.3 Obtaining R . 3
1.4 Using R Interactively and Writing Scripts . 4
1.5 Getting Help . 5

2 Working with Data 6
2.1 Basic Data Manipulation . 6
2.2 Sorting Data . 8
2.3 Caveat: Math Operations and the Recycling Rule . 8
2.4 Important Data Types . 9

2.4.1 Atomic Data Types . 9
2.4.2 Vectors . 10
2.4.3 Arrays, Matrices . 10
2.4.4 Dataframes . 10
2.4.5 Lists . 11
2.4.6 Functions . 11
2.4.7 S3 Classes . 11
2.4.8 S4 Classes . 12

2.5 Working with Dates . 12
2.6 Merging Dataframes . 13

2.6.1 Using SQL Commands Directly on R Dataframes . 13
2.7 Opening a Data File . 14
2.8 Issuing System Commands—Directory Listing . 14
2.9 File Operations . 15
2.10 Reading Data From the Clipboard . 15
2.11 Editing Data Directly . 15

3 Working With Very Large Data Files 15
3.1 Reading fields of data using scan() . 16
3.2 Utilizing Unix Tools . 16
3.3 Using Disk instead of RAM . 17
3.4 Using SQL Databases . 17
3.5 Changing Data from Wide to Long Format . 18

3.5.1 Going from Long Format to Wide . 18
3.5.2 Going from Wide Format to Long . 19

3.6 A Faster Reshape . 20

4 Cross Sectional Regression 20
4.1 Ordinary Least Squares . 20
4.2 Extracting Statistics from the Regression . 22
4.3 Heteroskedasticity and Friends . 22

4.3.1 Breusch-Pagan Test for Heteroskedasticity . 22
4.3.2 Heteroskedasticity (Autocorrelation) Robust Covariance Matrix 22

4.4 Linear Hypothesis Testing (Wald and F) . 23
4.5 Weighted and Generalized Least Squares . 23
4.6 Models With Factors/Groups . 23

2

5 Special Regressions 24
5.1 Fixed/Random Effects Models . 24

5.1.1 Fixed Effects . 25
5.1.2 Random Effects . 26

5.2 Qualitative Response . 26
5.2.1 Logit/Probit . 26
5.2.2 Multinomial Logit . 27
5.2.3 Ordered Logit/Probit . 27

5.3 Tobit and Censored Regression . 27
5.4 Heckman-Type Selection Models . 27
5.5 Quantile Regression . 28
5.6 Robust Regression - M Estimators . 28
5.7 Nonlinear Least Squares . 28
5.8 Two Stage Least Squares on a Single Structural Equation . 29
5.9 Systems of Equations . 29

5.9.1 Seemingly Unrelated Regression . 29
5.9.2 Two Stage Least Squares on a System . 29

6 Time Series Regression 30
6.1 Differences and Lags . 30
6.2 Filters . 31

6.2.1 Canned AR and MA filters . 31
6.2.2 Manual Filtration . 31
6.2.3 Hodrick Prescott Filter . 32
6.2.4 Kalman Filter . 32

6.3 ARIMA/ARFIMA . 32
6.4 ARCH/GARCH . 33

6.4.1 Basic GARCH–garch() . 33
6.4.2 Advanced GARCH–garchFit() . 34
6.4.3 Miscellaneous GARCH–Ox G@RCH . 34

6.5 Correlograms . 34
6.6 Predicted Values . 35
6.7 Time Series Tests . 35

6.7.1 Durbin-Watson Test for Autocorrelation . 35
6.7.2 Box-Pierce and Breusch-Godfrey Tests for Autocorrelation 35
6.7.3 Dickey-Fuller Test for Unit Root . 35

6.8 Vector Autoregressions (VAR) . 36

7 Plotting 36
7.1 Plotting Empirical Distributions . 37

7.1.1 Histograms . 37
7.1.2 Kernel Density Estimates . 37

7.2 Contour Plots . 37
7.3 Adding a Legend . 38
7.4 Adding Arrows, Text, and Markers . 38
7.5 Changing the Tick Marks . 39
7.6 Multiple Plots . 39

7.6.1 Simple Grids . 39
7.6.2 More Advanced Layouts . 39
7.6.3 Overplotting: Multiple Different Plots on the Same Graph 40

7.7 Saving Plots—png, jpg, eps, pdf, xfig . 42
7.8 Fixing Font and Symbol Size in Pdfs . 42
7.9 Adding Greek Letters and Math Symbols to Plots . 43
7.10 Changing the Font in Plots . 43

3

7.11 Other Graphics Packages . 44

8 Statistics 45
8.1 Working with Common Statistical Distributions . 45
8.2 P-Values . 46
8.3 Sampling from Data . 46

9 Math in R 46
9.1 Matrix Operations . 46

9.1.1 Matrix Algebra and Inversion . 46
9.1.2 Factorizations . 47

9.2 Numerical Optimization . 48
9.2.1 General Unconstrained Minimization . 48
9.2.2 General Minimization with Linear Constraints . 48

9.3 Quadratic Programming . 49
9.4 Root Finding . 49
9.5 Numerical Integration . 50

10 Programming 50
10.1 Writing Functions . 50
10.2 Looping . 51
10.3 Avoiding Loops . 51

10.3.1 Using Vector Math (Implicit Loops) . 51
10.3.2 Applying a Function to an Array, List, or Vector . 52
10.3.3 Applying a Function to By-Groups . 52
10.3.4 Replicating . 53

10.4 Conditionals . 53
10.4.1 Binary Operators . 53
10.4.2 WARNING: Conditionals and NA . 54

10.5 The Ternary Operator . 54
10.6 Outputting Text . 54
10.7 Pausing/Getting Input . 55
10.8 Timing Blocks of Code . 55
10.9 Calling C functions from R . 55

10.9.1 How to Write the C Code . 56
10.9.2 How to Use the Compiled Functions . 56

10.10Calling R Functions from C . 57
10.11Parallel Computing . 57
10.12Environments and Scope . 59

10.12.1Passing by Reference . 60

11 Changing Configurations 60
11.1 Default Options . 60

11.1.1 Significant Digits . 61
11.1.2 What to do with NAs . 61
11.1.3 How to Handle Errors . 61
11.1.4 Suppressing Warnings . 62

12 Saving Your Work 62
12.1 Saving the Data . 62

12.1.1 A Note About Scientific Notation . 62
12.2 Saving the Session Output . 62
12.3 Saving as LATEX . 63

13 Final Comments 63

4

14 Appendix: Code Examples 64
14.1 Monte Carlo Simulation . 64
14.2 The Haar Wavelet . 64
14.3 Maximum Likelihood Estimation . 65
14.4 Extracting Info From a Large File . 65
14.5 Contour Plot . 66

1 Introductory Comments

1.1 What is R?
R is an implementation of the object-oriented mathematical programming language S. It is developed by
statisticians around the world and is free software, released under the GNU General Public License. Syn
tactically and functionally it is very similar (if not identical) to S+, the popular statistics package.

1.2 How is R Better Than Other Statistical Software?
R is much more flexible than most software used by econometricians because it is a modern mathematical
programming language, not just a program that does regressions and tests. This means our analysis need
not be restricted to the functions included in the default package. There is an extensive and constantly
expanding collection of packages online for use in many disciplines. As researchers develop new algorithms
and processes, the corresponding packages get posted on the R website. In this sense R is always at the
forefront of statistical knowledge. Because of the ease and flexibility of programming in R it is easy to
extend.

The S language is the de facto standard for statistical science. Reading the statistical literature, we find
that examples and even pseudo-code are written in R-compatible syntax. Since most users have a statistical
background, the jargon used by R experts sometimes differs from what an econometrician (especially a
beginning econometrician) may expect. A primary purpose of this document is to eliminate this language
barrier and allow the econometrician to tap into the work of these innovative statisticians.

Code written for R can be run on many computational platforms with or without a graphical user
interface, and R comes standard with some of the most flexible and powerful graphics routines available
anywhere.

And of course, R is completely free for any use.

1.3 Obtaining R
The R installation program can be downloaded free of charge from http://www.r-project.org. Because R
is a programming language and not just an econometrics program, most of the functions we will be interested
in are available through packages1obtained from the R website. To obtain a package that does not come with
the standard installation follow the CRAN link on the above website. Under contrib you will find is a list of
compressed packages ready for download. Click on the one you need and save it somewhere you can find it
later. If you are using a gui, start R and click install package from local directory under the package menu.
Then select the file that you downloaded. Now the package will be available for use in the future. If you are
using R under linux, install new packages by issuing the following command at the command prompt: “R
CMD INSTALL packagename”

Alternately you can download and install packages at once from inside R by issuing a command like

> install.packages(c("car","systemfit"),repo="http://cran.stat.ucla.edu",dep=TRUE)

which installs the car and systemfit packages. The repo parameter is usually auto-configured, so there is
normally no need to specify it. The dependencies or dep parameter indicates that R should download
packages that these depend on as well, and is recommended. Note: you must have administrator (or root)
privileges to your computer to install the program and packages.

1In R speak, a package is a collection of code—what we are typically interested in—and a library is the place (e.g., on your
system) where packages are stored. Nevertheless we load packages using the library() command.

6

http://www.r-project.org
http://cran.stat.ucla.edu

Contributed Packages Mentioned in this Paper and Why
(* indicates package is included by default)

adapt Multivariate numerical integration
car Regression tests and robust standard errors

data.table much faster version of data.frame operations (like rbind)
DBI Interact with databases
dse1 State space models, Kalman filtration, and Vector ARMA

filehash Use hard disk instead of RAM for large datasets
fSeries Garch models with nontrivial mean equations
fracdiff Fractionally integrated ARIMA models
foreach Loop-level parallel processing
foreign* Loading and saving data from other programs
ggplot2 Graphics and plotting
gplm Fixed and random effects panel regressions

graphics* Contour graphs and arrows for plots
grid Graphics and plotting
Hmisc LATEX export
lattice An alternate type of contour plot and other graphics
lmtest Breusch-Pagan and Breusch-Godfrey tests
MASS* Robust regression, ordered logit/probit
Matrix Matrix norms and other matrix algebra stuff

MCMCpack Inverse gamma distribution
MNP Multinomial probit via MCMC
nlme* Nonlinear fixed and random effects models
nls* Nonlinear least squares
nnet Multinomial logit/probit
plm Fixed and random effects panel regressions

parallel* Parallel processing
quadprog Quadratic Programming Optimization
quantreg Quantile Regressions
R.matlab Read matlab data files
RMySQL Interact with SQL databases
RODBC Interact with SQL databases
rootSolve find roots of vector-valued functions
ROracle Interact with SQL databases

RPostgreSQL Interact with SQL databases
RSQLite Interact with SQL databases

sampleSelection Heckman-type selection models
sandwich (and zoo) Heteroskedasticity and autocorrelation robust covariance

sem Two stage least squares
sqldf operate on R dataframes using sql queries

survival* Tobit and censored regression
systemfit SUR and 2SLS on systems of equations

ts* Time series manipulation functions
tseries Garch, ARIMA, and other time series functions
VAR Vector autoregressions
xtable Alternative LATEX export
zoo required in order to have the sandwich package

From time to time we can get updates of the installed packages by running update.packages().

1.4 Using R Interactively and Writing Scripts
We can interact directly with R through its command prompt. Under windows the prompt and what we
type are in red and the output it returns is blue–although you can control the font colors though “GUI

7

preferences” in the edit menu. Pressing the up arrow will generally cycle through commands from the
history. Notice that R is case sensitive and that every function call has parentheses at the end. Instead of
issuing commands directly we can load script files that we have previously written, which may include new
function definitions.

Script files generally have the extension “.R”. These files contain commands as you would enter them at
the prompt, and they are recommended for any project of more than a few lines. In order to load a script
file named “mcmc.R” we would use the command

> source("mcmc.R")

One way to run R is to have a script file open in an external text editor and run periodically from the R
window. Commands executed from a script file may not print as much output to the screen as they do when
run interactively. If we want interactive-level verbosity, we can use the echo argument

> source("mcmc.R",echo=TRUE)

If no path is specified to the script file, R assumes that the file is located in the current working directory.
The working directory can be viewed or changed via R commands

> getwd()
[1] "/home/gvfarns/r"
> setwd("/home/gvfarns")
> getwd()
[1] "/home/gvfarns"

or under windows using the menu item change working directory. Also note that when using older versions
of R under windows the slashes must be replaced with double backslashes.

> getwd()
[1] "C:\\Program Files\\R\\rw1051\\bin"
> setwd("C:\\Program Files\\R\\scripts")
> getwd()
[1] "C:\\Program Files\\R\\scripts"

We can also run R in batch (noninteractive) mode under linux by issuing the command:“R CMD BATCH
scriptname.R” The output will be saved in a file named scriptname.Rout. Batch mode is also available under
windows using Rcmd.exe instead of Rgui.exe.

Since every command we will use is a function that is stored in one of the packages, we will often have
to load packages before working. Many of the common functions are in the basepackage, which is loaded by
default. For access to any other function, however, we have to load the appropriate package.

> library(foreign)

will load the package that contains the functions for reading and writing data that is formatted for other
programs, such as SAS and Stata. Alternately (under windows), we can pull down the package menu and
select library. Instead of library() we could also have used require(). The major difference between these
functions is that library() returns an error if the requested package is not installed, wheras require()
returns a warning. The latter function is generally used by functions that need to load packages, while the
former is generally called by the user.

1.5 Getting Help
There are several methods of obtaining help in R

> ?qt
> help(qt)
> help.start()
> help.search("covariance")

8

Preceding the command with a question mark or giving it as an argument to help() gives a description of its
usage and functionality. The help.start() function brings up a menu of help options and help.search()
searches the help files for the word or phrase given as an argument. Many times, though, the best help
available can be found by a search online. Remember as you search that the syntax and functionality of R
is almost identical to that of the proprietary statistical package S+.

The help tools above only search through the R functions that belong to packages on your computer. A
large percentage of R questions I hear are of the form “Does R have a function to do. . . ” Users do not know
if functionality exists because the corresponding package is not installed on their computer. To search the
R website for functions and references, use

> RSiteSearch("Kalman Filter")

The results from the search should appear in your web browser.

2 Working with Data

2.1 Basic Data Manipulation
R allows you to create many types of data storage objects, such as numbers, vectors, matrices, strings,
and dataframes. The command ls() gives a list of all data objects currently available. The command rm()
removes the data object given it as an argument. We can determine the type of an object using the command
typeof() or its class type (which is often more informative) using class().

Entering the name of the object typically echos its data to the screen. In fact, a function is just another
data member in R. We can see the function’s code by typing its name without parenthesis.

The command for creating and/or assigning a value to a data object is the less-than sign followed by the
minus sign.

> g <- 7.5

creates a numeric object called g, which contains the value 7.5. True vectors in R (as opposed to one
dimensional matrices) are treated as COLUMN vectors, when the distinction needs to be made.

> f <- c(7.5,6,5)
> F <- t(f)

uses the c() (concatenate) command to create a vector with values 7.5, 6, and 5. c() is a generic function
that can be used on multiple types of data. The t() command transposes f to create a 1x3 matrix—because
“vectors” are always column vectors. The two data objects f and F are separate because of the case sensitivity
of R. The command cbind() concatenates the objects given it side by side: into an array if they are vectors,
and into a single dataframe if they are columns of named data.

> dat <- cbind(c(7.5,6,5),c(1,2,3))

Similarly, rbind() concatenates objects by rows—one above the other—and assumes that vectors given it
are ROW vectors (see 2.4.2).

Notice that if we were concatenating strings instead of numeric values, we would have to put the strings
in quotes. Alternately, we could use the Cs() command from the Hmisc package, which eliminates the need
for quotes.

> Cs(Hey,you,guys)
[1] "Hey" "you" "guys"

Elements in vectors and similar data types are indexed using square brackets. R uses one-based indexing.

> f
[1] 7.5 6.0 5.0
> f[2]
[1] 6

9

Notice that for multidimensional data types, such as matrices and dataframes, leaving an index blank refers
to the whole column or row corresponding to that index. Thus if foo is a 4x5 array of numbers,

> foo

will print the whole array to the screen,

> foo[1,]

will print the first row,

> foo[,3]

will print the third column, etc. We can get summary statistics on the data in goo using the summary() and
we can determine its dimensionality using the NROW(), and NCOL() commands. More generally, we can use
the dim() command to know the dimensions of many R objects.

If we wish to extract or print only certain rows or columns, we can use the concatenation operator.

> oddfoo <- foo[,c(1,3,5)]

makes a 4x3 array out of columns 1,3, and 5 of foo and saves it in oddfoo. By prepending the subtraction
operator, we can remove certain columns

> nooddfoo <- foo[,-c(1,3,5)]

makes a 4x2 array out of columns 2 and 4 of foo (i.e., it removes columns 1,3, and 5).
We can also index using a vector of boolean (TRUE/FALSE) values of the same length as the dimentions

of our R object in order to select only the TRUE elements. A common case would be the use of a comparison
operator to extract certain columns or rows.

> smallfoo <- foo[foo[,1]<1,]

compares each entry in the first column of foo to 1 and inserts the row corresponding to each match into
smallfoo. To check a set of values (a vector) against the values of another, we can use the intuitively named
%in% operator. To repeat the above, pulling all rows of foo that have 2, 4, or 6 in the first column we could
use

> otherfoo <- foo[foo[,1] %in% c(2,4,6),]

The %in% operator is often easier to use than == when indexing because the == operator returns NA when
either side of the comparison is NA, and NA is not a valid index.

If we want to pull the first match of a particular value, rather than all of them, we can use the match()
function. The first argument is the value to be looked up and the second is the object (typically a vector)
to be searched. It returns the index of the first match or NA if it is not found.

> match(4,c(0,9,4,3,1))
[1] 3

Thus if we wanted to find the first row of foo that has 10 in the first column we could use

> firstfoo <- foo[match(foo[,1]<10,]

The match() function can also look up multiple values

> match(c(4,8,0),c(0,9,4,3,1))
[1] 3 NA 1

Using double instead of single brackets for indexing changes the behavior slightly. Basically it doesn’t
allow referencing multiple objects using a vector of indices, as the single bracket case does. For example,

> w[[1:10]]

10

does not return a vector of the first ten elements of w, as it would in the single bracket case. Also, it strips
off attributes and types. If the variable is a list, indexing it with single brackets yields a list containing the
data, double brackets return the (vector of) data itself. Most often, when getting data out of lists, double
brackets are wanted, otherwise single brackets are more common.

Occasionally we have data in the incorrect form (i.e., as a dataframe when we would prefer to have a
matrix). In this case we can use the as. functionality. If all the values in goo are numeric, we could put
them into a matrix named mgoo with the command

> mgoo <- as.matrix(goo)

Other data manipulation operations can be found in the standard R manual online. There are a lot of
them.

2.2 Sorting Data
We can reorder data by one or more columns. If wealth is a dataframe with columns year, country, gdp,
and gnp, we could sort the data by year using order() or extract a period of years using the colon operator

> wealth <- wealth[order(wealth$year),]
> firstten <- wealth[1:10,]
> eighty <- wealth[wealth$year==1980,]

This sorts by year and puts the first ten years of data in firstten. All rows from year 1980 are stored in
eighty (notice the double equals sign).

Notice that we can also sort by multiple columns using order().

> wealth <- wealth[order(wealth$country,-wealth$year),]

Sorts the wealth dataset by country and then by year. We put a minus sign before year in order to sort in
descending order. Notice that after a sort, the row names of the data frame contain the original row number
of each row. We can access these row numbers or delete them if we want to using these two commands:

> originalorder <- row.names(wealth)
> row.names(wealth) <- NULL

2.3 Caveat: Math Operations and the Recycling Rule
Mathematical operations such as addition and multiplication operate elementwise by default. The matrix
algebra operations are generally surrounded by % (see section 9). The danger here happens when one tries
to do math using certain objects of different sizes. Instead of halting and issuing an error as one might
expect, R uses a recycling rule to decide how to do the math—that is, it repeats the values in the smaller
data object. For example,

> a<-c(1,3,5,7)
> b<-c(2,8)
> a+b
[1] 3 11 7 15

Only if the dimensions are not multiples of each other does R return a warning (although it still does the
computation)

> a<-c(2,4,16,7)
> b<-c(2,8,9)
> a+b
[1] 4 12 25 9
Warning message:
longer object length

is not a multiple of shorter object length in: a + b

11

At first the recycling rule may seem like a dumb idea (and it can cause error if the programmer is
not careful) but this is what makes operations like scalar addition and scalar multiplication of vectors and
matrices (as well as vector-to-matrix addition) possible. One just needs to be careful about dimensionality
when doing elementwise math in R.

Notice that although R recycles vectors when added to other vectors or data types, it does not recycle
when adding, for example, two matrices. Adding matrices or arrays of different dimensions to each other
produces an error.

2.4 Important Data Types
2.4.1 Atomic Data Types

R has the capability to have an unlimited number of data types. However, the most common data objects
are aggregations of a few “atomic” types. These building block data elements include the following:

•	 Logical. Logical values can be TRUE or FALSE. We often use the abbreviated form T and F instead.
If a logical variable is coerced into a numeric, TRUE will become 1 and FALSE will become 0. Thus
sum(c(T,F,T)) will evaluate to 2.

•	 Integer. Integers in R are most frequently used for indexing datasets or as counters in loops. That is, a
number used in square brackets to reference elements of a vector or dataframe will be converted to an
integer. Also using the colon operator to create a sequence of numbers will generate integers. However,
assignment of a number to a variable by default creates a variable of type numeric. For example

> j <- 0
> for (i in 1:30){
> j <- j+1
> }

will result in an integer i with a value of 30 and a numeric j with a value of 30.0. Conversion from
integer to numeric and back happens pretty transparently, so it doesn’t get noticed by most users.

•	 Numeric. This is a double precision floating point number. Most numbers we deal with are of this
type. Note that the function as.numeric() is actually a general test for whether a variable is numeric.
That is, as.numeric(j) and as.numeric(i) from the example above will both return TRUE even
though i is technically an integer, not a numeric.

•	 Character. A character string is of type character. Character strings can be compared using ==, >, and
<. The greater than and less than signs evaluate the strings alphabetically. For example "cat"<"hat"
evaluates to TRUE but "cat"<"bat" evaluates to FALSE. Strings beginning with numbers and symbols
come alphabetically before those beginning with letters. Also, if the strings are alphabetically the
same except for case, the lower case letters are considered to come earlier. Actually, the most useful
comparison operator is ==. Notice also that to concatenate strings, we don’t use the addition operator.
Instead we use cat() or paste().

•	 Factor. Factors are similar to character strings in that they look like strings of characters. However,
internally they are represented by integers, with an accompanying table matching each integer to a
value. For large vectors with comparatively few possible values, factors are much more efficient, both in
speed and space. They are also more useful in many statistical operations. For example, you can use a
vector of factors as an explanatory variable in a model and R will understand how to use them. Not so
with vectors of character strings. For this reason, R will convert character vectors to factors
in many cases, including when we read in a text file and when we create a dataframe.
Understanding this fact will clear up a good deal of confusion for the new R user. There
are options in many functions to override this behavior, and we can explicitly convert to and from
factors using as.factor() and as.character(), respectively.

12

2.4.2 Vectors

The most fundamental numeric data type in R is an unnamed vector. A scalar is, in fact, a 1-vector. Vectors
are more abstract than one dimensional matrices because they do not contain information about whether
they are row or column vectors—although when the distinction must be made, R usually assumes that
vectors are columns.

The vector abstraction away from rows/columns is a common source of confusion in R by people familiar
with matrix oriented languages, such as matlab. The confusion associated with this abstraction can be shown
by an example

a<-c(1,2,3)
b<-c(4,6,8)

Now we can make a matrix by stacking vertically or horizontally and R assumes that the vectors are either
rows or columns, respectively.

> cbind(a,b)
a b

[1,] 1 4
[2,] 2 6
[3,] 3 8
> rbind(a,b)
[,1] [,2] [,3]

a 1 2 3
b 4 6 8

One function assumed that these were column vectors and the other that they were row vectors. The take
home lesson is that a vector is not a one dimensional matrix, so don’t expect them to work as they do in a
linear algebra world. To convert a vector to a 1xN matrix for use in linear algebra-type operations (column
vector) us as.matrix().

Note that t() returns a matrix, so that the object t(t(a)) is not the same as a.

2.4.3 Arrays, Matrices

In R, homogeneous (all elements are of the same type) multivariate data may be stored as an array or a
matrix. A matrix is a two-dimensional object, whereas an array may be of many dimensions. These data
types may or may not have special attributes giving names to columns or rows (although one cannot reference
a column using the $ operator as with dataframes) but can hold only numeric data. Note that one cannot
make a matrix, array, or vector of two different types of data (numeric and character, for example). Either
they will be coerced into the same type or an error will occur.

2.4.4 Dataframes

Most econometric data will be in the form of a dataframe. A dataframe is a collection of vectors (we think
of them as columns) containing data, which need not all be of the same type, but each column must have
the same number of elements. Each column has a title by which the whole vector may be addressed. If goo
is a 3x4 data frame with titles age, gender, education, and salary, then we can print the salary column
with the command

> goo$salary

or view the names of the columns in goo

> names(goo)

Most mathematical operations affect multidimensional data elementwise (unlike some mathematical lan
guages, such as matlab). From the previous example,

> salarysq <- (goo$salary)^2

13

creates a dataframe with one column entitled salary with entries equal to the square of the corresponding
entries in goo$salary. Output from actions can also be saved in the original variable, for example,

> salarysq <- sqrt(salarysq)

replaces each of the entries in salarysq with its square root.

> goo$lnsalary <- log(salarysq)

adds a column named lnsalary to goo, containing the log of the salary.

2.4.5 Lists

A list is more general than a dataframe. It is essentially a bunch of data objects bound together, optionally
with a name given to each. These data objects may be scalars, strings, dataframes, or any other type.
Functions that return many elements of data (like summary()) generally bind the returned data together as
a list, since functions return only one data object. As with dataframes, we can see what objects are in a
list (by name if they have them) using the names() command and refer to them either by name (if existent)
using the $ symbol or by number using brackets. Referencing a single member of a list is generally done
using double, not single, brackets (see section 2.1). We can think of the [[operator as being a slightly more
flexible version of $ (more flexible in that it works even if the elements are not named and can optionally
perform partial matching on names). Both operators pull a single item from the list. To get a new list that
is a subset of the original list, we use single brackets [. Remember not to use double brackets to try
and pull multiple elements from a list. Also remember that double brackets return an item
from inside the list and single brackets return a list containing the desired element(s).

Sometimes we would like to simplify a list into a vector. For example, the function strsplit() returns a
list containing substrings of its argument. In order to make them into a vector of strings, we must change the
list to a vector using unlist(). Lists sometimes get annoying, so unlist() is a surprisingly useful function.

2.4.6 Functions

Yes, a function is a data object. Functions are created using the method described in section (10.1). The
function, then, can be passed to other functions, copied, and modified, just like other data items. And the
scope rules (whether the function is visible from a particular location in the code) are the same as for other
data items.

2.4.7 S3 Classes

Many functions return an object containing many types of data, like a list, but would like R to know
something about what type of object it is. A list with an associated “class” attribute designating what type
of list it is is an S3 class. If the class is passed as an argument, R will first search for an appropriately named
function. If x is of class foo and you print it with

> print(x)

the print() routine first searches for a function named print.foo() and will use that if it exists. Otherwise
it will use the generic print.default(). For example, if x is the output of a call to lm(), then

> print(x)

will call print.lm(x), which prints regression output in a meaningful and aesthetically pleasing manner.
S3 lists are quite simple to use. The are really just lists with an extra attribute. We can create them

either using the class() function or just adding the class attribute after creation of a list.

> h <- list(a=rnorm(3),b="This shouldn’t print")
> class(h) <- "myclass"
> print.myclass<-function(x){cat("A is:",x$a,"\n")}
> print(h)
A is: -0.710968 -1.611896 0.6219214

14

If we were to call print() without assigning the class, we would get a different result.
Many R packages include extensions to common generic functions like print(), summary(), and plot()

which operate on the particular classes produced by that package. The ability of R to choose a function to
execute depending on the class of the data passed to it makes interacting with new classes very convenient.
On the other hand, many extensions have options specific to them, so we must read the help file on that
particular extension to know how to best use it. For example, we should read up on the regression print
routine using

> ?summary.lm

instead of

> ?summary

2.4.8 S4 Classes

S4 classes are a recent addition to R. They generically hold data and functions, just like S3 classes, but
have some technical advantages, which transcend the scope of this document. For our purposes, the most
important difference between an S3 and S4 class is that attributes of the latter are referenced using @ instead
of $ and it can only be created using the new() command.

> g <- garchFit(~arma(0,1)+garch(2,3),y)
> fitvalues <- g@fit

2.5 Working with Dates
The standard way of storing dates internally in R is as an object of class Date. This allows for such things as
subtraction of one date from another yielding the number of days between them. To convert data to dates,
we use as.Date(). This function takes as input a character string and a format. If the given vector of dates
is stored as a numeric format (like “20050627”) it should be converted to a string using as.character()
first. The format argument informs the code what part of the string corresponds to what part of the date.
Four digit year is %Y, two digit year is %y, numeric month is %m, alphabetic (abbreviated) month is %b,
alphabetic (full) month is %B, day is %d. For other codes, see the help files on strptime. For example, if d
is a vector of dates formatted like “2005-Jun-27”, we could use

> g<-as.Date(d,format="%Y-%b-%d")

Internally, Date objects are numeric quantities, so they don’t take up very much memory.
We can perform the reverse operation of as.Date()—formatting or extracting parts of a Date object—

using format(). For example, given a column of numbers like “20040421”, we can extract a character string
representing the year using

> year<-format(as.Date(as.character(v$DATE),format="%Y%m%d"),format="%Y")

Although we can extract day of the week information in string or numeric form using format(), a simpler
interface is available using the weekdays() function.

> mydates<-as.Date(c("19900307","19900308"),format="%Y%m%d")
> weekdays(mydates)
[1] "Wednesday" "Thursday"

Notice that in order to get a valid date, we need to have the year, month, and day. Suppose we were using
monthly data, we would need to assign each data point to, for example, the first day of the month. In the
case of a numeric format such as “041985” where the first two digits represent the month and the last four
the year, we can simply add 10,000,000 to the number, convert to string, and use the format “%d%m%Y”.
In the case of a string date such as “April 1985” we can use

> as.Date(paste("1 ",v$DATE),format="%d %B %Y")

15

http:summary.lm

Notice that in order for paste to work correctly v$DATE must be a vector of character strings. Some read
methods automatically convert strings to factors by default, which we can rectify by passing the as.is=T
keyword to the read method or converting back using as.character().

An alternative method of storing dates is using the yearmon format from the zoo package. a yearmon
object works much like a Date but it does not have a day portion. I have also used yearmon to change
monthly values to month-end values, since when we convert from yearmon to Date we specify where in the
month we wish the date to occur, using the frac argument. For example

> NewDate<-as.Date(as.yearmon(myvariable,format="%b-%Y"),frac=1)

will create a date variable occuring at the end of the month represented by a string of the form ‘‘Jun-1999’’.
Setting frac=0 would have used the first day of the month. We can perform a similar operation using
yearqtr() to get the beginning or end of a calendar quarter.

2.6 Merging Dataframes
If we have two dataframes covering the same time or observations but not completely aligned, we can merge
the two dataframes using merge(). Either we can specify which column to use for aligning the data, or
merge() will try to identify column names in common between the two.

For example, if B is a data frame of bond data prices over a certain period of time and had a column
named date containing the dates of the observations and E was a similar dataframe of equity prices over
about the same time period, we could merge them into one dataframe using

> OUT<-merge(B,E)

If the date column was named date in B but day in E, the command would instead be

> OUT<-merge(B,E,by.x="date",by.y="day")

Notice that by default merge() includes only rows in which data are present in both B and E. To put NA
values in the empty spots instead of omitting the rows we include the all=T keyword. We can also specify
whether to include NA values only from one or the other using the all.x and all.y keywords.

2.6.1 Using SQL Commands Directly on R Dataframes

In my experience, econometrics work can involve a lot of complex merging, and merge() is somewhat limited
in its design. For example, you can only merge two datasets at a time, the merged database contains all
columns from both inputs, and you can’t merge on conditionals (only equality), among many others. In cases
like these I do much of my data work in an SQL database and then inport relatively complete dataframes into
R. However, it is often the case that a complex data join is desired on dataframes that are already in R and
not worth sending into a database. For these type of merges and data manipuations, I use SQL commands
directly on R dataframes using the package sqldf. Since the whole databases are retained in memeory using
this method, merges are sometimes much faster than when they are done in a database.

The use of sqldf does not move the data from R into a database, so it affords no advantage specific to
maintaining larger datasets than R can hold in the computer’s RAM, but some data operations are much
simpler and more intuitive in SQL than they would be in R2

Suppose we want to add the column MktCap from table crsp to the table compustat where the merge
is on matching permno we want to match every compustat observation with every crsp observation that
occurred before it.

> library(sqldf)
> sqldf("select a.*,b.MktCap from compustat left join crsp as b on a.permno=b.permno

and a.gmonth>b.gmonth")
2Actually if the size of the intermediate tables is a concern for RAM, sqldf actually does provide an advantage: we can pass

the parameter dbname=tempfile() to sqldf() and it will copy the input tables to a temporary database on disk and use that
database–instead of precious RAM–for intermediate tables.

16

This would be quite a hassle using merge() but is trivial in SQL.
In this example I used gmonth, which is a variable I created to represent the number of months since

January, 0000. It is an integer variable of my own creation that bypasses R and sqldf’s date conventions.
Notice that sqldf tries to work well with R dates but sometimes is not successful. R dates internally are

integers (representing the number of seconds since midnight on Jan 1, 1970). If you are modifying an R
Date variable in sqldf, it will continue to be interpreted as a Date. If you create a new variable from a date
variable, it will be numeric. You can convert back to a date variable in R using R’s as.Date() function.

> firstdates <- sqldf(’select FundID, min(Dates) as firstdate from mydata’)
> firstdates$firstdate <- as.Date(as.numeric(firstdates$firstdate),"1970-01-01")

The use of as.numeric() is necessary because in this case sqldf converts the integer representation of the
date to a string.

Simialarly, sqldf does not handle factors particularly intelligently. That is, a factor in R is an integer,
where the integer can be looked up in the attributes to find the value. Factors are treated as integers in
sqldf. As in other areas of R, I find factors to be a nuisance and resolve this problem by converting factors
to character vectors before use in sqldf.

Another warning: sqldf is set up by default to use sqlite as its database. That works quite well. However,
if you are also using RMySQL in the same R session, it will likely try to use MySQL for its operations.
In my experience this doesn’t work as well with sqldf. To force sqldf() to use sqlite, pass the parame
ter drv="sqlite" or set options(sqldf.driver="SQLite"). Alternatively, you can detach RMySQL by
running detach(package:RMySQL) before the sqldf() command.

A final note about sqldf: any variable containing a period (.) in it will have that period translated
to an underscore in sqldf. This is because the period is part of standard SQL syntax. Unfortunately the
common convention in R (using period to separate words in a variable name) and SQL (using underscores
to separate words in a variable name) are incompatible, so when working with sqldf we can just expect that
some translation is necessary, or we can avoid both of these separators.

2.7 Opening a Data File
R is able to read data from many formats. The most common format is a text file with data separated into
columns and with a header above each column describing the data. If blah.dat is a text file of this type
and is located on the windows desktop we could read it using the command

> mydata <- read.table("C:/WINDOWS/Desktop/blah.dat",header=TRUE)

Now mydata is a dataframe with named columns, ready for analysis. Note that R assumes that there are
no labels on the columns, and gives them default values, if you omit the header=TRUE argument. Now let’s
suppose that instead of blah.dat we have blah.dta, a stata file.

> library(foreign)
> mydata <- read.dta("C:/WINDOWS/Desktop/blah.dta")

Stata files automatically have headers.
Another data format we may read is .csv comma-delimited files (such as those exported by spreadsheets).

These files are very similar to those mentioned above, but use punctuation to delimit columns and rows.
Instead of read.table(), we use read.csv(). Fixed width files can be read using read.fwf().

Matlab (.mat) files can be read using readMat() from the R.matlab package. The function writeMat()
from the same package writes matlab data files.

2.8 Issuing System Commands—Directory Listing
Sometimes we want to issue a command to the operating system from inside of R. For example, under unix
we may want to get a list of the files in the current directory that begin with the letter x. We could execute
this command using

> system("ls x*")
xaa xab xac xad xae

17

If we want to save the output of the command as an R object, we use the keyword intern

> files <- system("ls x*",intern=T)

2.9 File Operations
Using the system() command is frequently not the best course because it limits the transportability of your
code to machines running the same operating system and sometimes having the same third party software
as you do.

R comes with some functions that manipulate files directly. file.access() tests whether a file exists
and whether it can be read from and written to. file.choose() prompts the user for a file name to open
or create. Also there are file operations called
tt file.copy(), file.remove(), and file.rename() which do what we expect them to. There are a few
other file.-type commands as well. In addition to these, the unlink() command removes either files or
directories, possibly recursively.

2.10 Reading Data From the Clipboard
When importing from other applications, such as spreadsheets and database managers, the quickest way to
get the data is to highlight it in the other application, copy it to the desktop clipboard, and then read the
data from the clipboard. R treats the clipboard like a file, so we use the standard read.table() command

> indata <- read.table("clipboard")

2.11 Editing Data Directly
R has a built-in spreadsheet-like interface for editing data. It’s not very advanced, but it works in a pinch.
Suppose a is a dataframe, we can edit it in place using

> data.entry(a)

Any changes we make (including changing the type of data contained in a column) will be reflected in a
immediately. If we want to save the changed data to a different variable, we could have used

> b <- de(a)

Notice that both de() and data.entry() return a variable of type list. If what we wanted was a dataframe,
for example, we need to convert it back after editing.

The function edit() works like de() but for many different data types. In practice, it calls either de()
or the system default text editor (which is set using options()).

A similar useful function is fix(), which edits an R object in place. fix() operates on any kind of data:
dataframes are opened with de() and functions are opened with a text editor. This can be useful for quick
edits either to data or code.

3 Working With Very Large Data Files
R objects can be as big as our physical computer memory (and operating system) will allow, but it is
not designed for very large datasets. This means that extremely large objects can slow everything down
tremendously and suck up RAM greedily. The read.table() family of routines assume that we are not
working with very large data sets and so are not careful to conserve on memory3 . They load everything at
once and probably make at least one copy of it.

A better way to work with huge datasets is to read the file a line (or group of lines) at a time. We do
this using connections. A connection is an R object that points to a file or other input/output stream. Each
time we read from a connection the location in the file from which we read moves forward.

3According to the help file for read.table() you can improve memory usage by informing read.table() of the number of
rows using the nrows parameter. On unix/linux you can obtain the number of rows in a text file using “wc -l”.

18

Before we can use a connection, we must create it using file() if our data source is a file or url() for an
online source (there are other types of connections too). Then we use open() to open it. Now we can read
one or many lines of text using readLines(), read fields of data using scan(), or write data using cat() or
one of the write.table() family of routines. When we are done we close using close().

3.1 Reading fields of data using scan()
Reading fields of data from a huge file is a very common task, so we give it special attention. The most
important argument to scan() is what, which specifies what type of data to read in. If the file contains
columns of data, what should be a list, with each member of the list representing a column of data. For
example, if the file contains a name followed by a comma separator and an age, we could read a single line
using

> a <- scan(f,what=list(name="",age=0),sep=",",nlines=1)

where f is an open connection. Now a is a list with fields name and age. Example 14.4 shows how to read
from a large data file.

If we try to scan when the connection has reached the end of the file, scan() returns an empty list. We
can check it using length() in order to terminate our loop.

Frequently we know how many fields are in each line and we want to make sure the scan() gets all of
them, filling the missing ones with NA. To do this we specify fill=T. Notice that in many cases scan() will
fill empty fields with NA anyway.

Unfortunately scan returns an error if it tries to read a line and the data it finds is not what it is expecting.
For example, if the string "UNK" appeared under the age column in the above example, we would have an
error. If there are only a few possible exceptions, they can be passed to scan() as na.strings. Otherwise
we need to read the data in as strings and then convert to numeric or other types using as.numeric() or
some other tool.

Notice that reading one line at a time is not the fastest way to do things. R can comfortably read 100,
1000, or more lines at a time. Increasing how many lines are read per iteration could speed up large reads
considerably. With large files, we could read lines 1000 at a time, transform them, and then write 1000 at a
time to another open connection, thereby keep system memory free.

If all of the data is of the same type and belong in the same object (a 2000x2000 numeric matrix, for
example) we can use scan() without including the nlines argument and get tremendously faster reads. The
resulting vector would need only to be converted to type matrix.

3.2 Utilizing Unix Tools
If you are using R on a linux/unix machine4 you can use various unix utilities (like grep and awk) to read
only the colunms and rows of your file that you want. The utility grep trims out rows that do or do not
contain a specificed pattern. The programming language awk is a record oriented tool that can pull out and
manipulate columns as well as rows based on a number of criteria.

Some of these tools are useful within R as well. For example, we can preallocate our dataframes according
to the number of records (rows) we will be reading in. For example to know how large a dataframe to allocate
for the calls in the above example, we could use

> howmany <- as.numeric(system ("grep -c ’,C,’ file.dat"))

Since allocating and reallocating memory is one of the time consuming parts of the scan() loop, this can
save a lot of time and troubles this way. To just determine the number of rows, we can use the utility wc.

> totalrows <- as.numeric(strsplit(system("wc -l Week.txt",intern=T),split=" ")[[1]][1])

Here system() returns the number of rows, but with the file name as well, strsplit() breaks the output
into words, and we then convert the first word to a number.

The bottom line is that we should use the right tool for the right job. Unix utilities like grep, awk, and
wc can be fast and dirty ways to save a lot of work in R.

4Thanks to Wayne Folta for these suggestions

19

3.3 Using Disk instead of RAM
Unfortunately, R uses only system RAM by default. So if the dataset we are loading is very large it is likely
that our operating system will not be able to allocate a large enough chunck of system RAM for it, resulting
in termination of our program with a message that R could not allocate a vector of that size. Although
R has no built in disk cache system, there is a package called filehash that allows us to store our variables
on disk instead of in system RAM. Clearly this will be slower, but at least our programs will run as long
as we have sufficient disk space and our file size does not exceed the limits of our operating system. And
sometimes that makes all the difference.

The functions in filehash allow us to create a database on disk and the interact with it as if it were an R
environment. We can read, write, and modify data in this disk environment in the usual R way. The usual
way of referencing R objects within an environment is using the $ operator, similar to the way we interact
with vectors in a dataframe.

> dbCreate("dump1.db")
> dbhandle<-dbInit("dump1.db")
> db1<-db2env(dbhandle)
> db1$myfirsttable <- read.table("large1.txt",header=T)
> db1$mysecondtable <- read.table("large2.txt",header=T)
> mergeddata <- merge(db1$myfirsttable, db2$mysecondtable, by=c("date","id"))

Now we have two dataframes inside the db1 environment and we have the merged version of the two in
RAM. If there were insufficient RAM for the merged data, we could have placed it inside the db1 environment
as well.

3.4 Using SQL Databases
A more elegant solution to the ones already mentioned is to keep huge datasets somewhere outside of R to
do preliminary data work, then to use R only for the statistical analysis on the final (smaller) data. Large
databases may be kept on an SQL server and queries may be sent to it from within R, and then data, merged,
cleaned, and fully subsetted, may be imported into R. This sounds like a fairly complex process, but I have
actually found it to be surprisingly simple. This is my preferred way of dealing with large data files5 .

Several implementations of SQL are supported by R. There is a direct interface to SQLite, PostgreSQL,
Oracle, and MySQL. Microsoft SQL server and others may be reached using an ODBC connection available
through the RODBC package, which is also the package used to import excel files directly, if you absolutely
must do that.

On my system (Fedora Linux) a local MySQL server can be installed an started using the commands (at
the Linux command prompt)

$ yum install mysql mysql-server
$ sudo service mysqld start

Since I am using this from my desktop I don’t feel the need to set up accounts and passwords on my SQL
server. I use the package RMySQL to connect to the MySQL server using the package DBI. I create a
connection to a database which I will call “test” using

> dr<-dbDriver("MySQL")
> con<-dbConnect(dr,"test")

Now we can create a dataset (just an example) and save it to SQL

> A<-data.frame(a=rnorm(5000),b=runif(5000))
> dbWriteTable(con,"D1",A)
> dbGetQuery(con,"create table D2 as select * from D1 where a>0")

5Many econometricians perform data cleaning and basic operations using a language like SAS, export the data, and then
read the cleaned data into R for the statistical analysis. This used to be my approach but I find the SQL approach cheaper
and more convenient. Pretty much anything you might do with a datastep in SAS is faster and better implemented in SQL.

20

http:dbhandle<-dbInit("dump1.db
http:dbCreate("dump1.db

The dbWriteTable connection writes dataframe A as a table D1 in the databse. The next query creates a
new dataset in the database called D2, which contains only the rows from D1 where the generated random
number was positive. It returns NULL. Notice that if we had not specified “create table as” then this
command would have returned a dataframe with the selected rows and columns. If we just want to read an
entire SQL dataset into R, we could have used the dbReadTable() function instead.

Another thing to notice is that you can load data directly into the SQL server without creating and R
table using dbWriteTable(). Just provide the csv file instead of a dataframe.

> dbWriteTable(con,"D1","./mybigfile.csv")

We can see what tables are available and what varaibles are in a table using (respectively)

> dbListTables(con)
[1] "D1" "D2"
> dbListFields(con,"D2")
[1] "row_names" "a" "b"

When we are done using the SQL connection, we close it using

> dbDisconnect(con)

Of course this could have been done with a remote SQL server as well as one on this workstation, and
the only difference would have been the arguments in the dbConnect() command.

Using an SQL server to keep, merge, filter, and perform basic manipulations on data before using the
finished data in R can save a lot of time and headache. R is not really the right software for these functions
when the datasets are very large, and the SQL interfaces allows us to do all this on the server where the
data resides, before we get to the analysis part. Of course, there is some effort required in learning to use
SQL well, but it’s a comparatively simple and accessable language, and in my opinion the right tool for the
job.

One thing to watch for when interacting with an SQL server from R is that variable types are typically not
preserved. For example, a datetime variable in the SQL database will be imported as a vector of character
strings in R, not as a vector of R Dates.

Notice, if it is the SQL functionlity (complex joins, etc.) that we seek and not its ability to maintain
large databases, we can easily interact with R datasets directly in R using SQL commands by passing them
to sqldf. See section (2.6.1).

There are a few gotchas when using MySQL from within R. For example, if you are loading string
variables into the sql server and some of them contain tab characters, the operation will likely interpret
those tabs at the end of the field and the field ordering will be off. It is a good idea to remove tabs and
other special characters that MySQL may interpret as something other than text, if that is possible without
compromising the data.

3.5 Changing Data from Wide to Long Format
3.5.1 Going from Long Format to Wide

R is generally set up to work with data in wide format. That is, if we have panel data, most R functions
and programmers expect columns to represent the cross section and rows to represent the time dimension of
the data. For example, we may have returns on 5 assets over time. In wide format there will be 6 columns
(one indicating the date and 5 the return to each asset).

However, large databases, especially those coming from the SAS or SQL world, will typically store data in
long format. The same data mentioned above would consist of three columns: the date, the asset in question,
and the associated return. Changing from wide format to long and back is a fairly common operation with
econometric and especially financial data.

The most convenient way to change from wide to long format or back in R is to use the reshape()
function. Unfortunately, the writers of this function gave the arguments names that assume a format that is
the opposite of what we usually want, and gave the arguments descriptive names, which normally serve only

21

to confuse an econometrician. Specifically, they assume each row is an individual and the columns represent
observations over time–normal economic data has a row for each time and a column for each individual.

Recognizing this naming issue and correcting for it, we can use reshape to quickly produce a wide version
of long data. Suppose we start with a dataframe h in long format

> h
date id return

1 1990-10-01 a -0.14838438
2 1990-10-01 b -0.08231648
3 1990-10-01 c 0.26355277
4 1990-10-01 d -1.52749429
5 1990-10-01 e -0.11889179
6 1990-10-02 a 2.39816839
...

We would change to wide format using

> reshape(h,idvar=’date’,timevar=’id’,direction=’wide’)
date return.a return.b return.c return.d return.e

1 1990-10-01 -0.1483844 -0.08231648 0.26355277 -1.52749429 -0.1188918
6 1990-10-02 2.3981684 -0.56833820 -0.16736626 0.64116497 0.7249889
11 1990-10-03 -1.6494030 -0.86961966 -0.40232451 -0.85386200 1.8626587
...

Notice that idvar is the variable that designates each ROW in wide format, timevar is the variable that
will define the new COLUMN names. Applying the argument names to the meaning of economic data is one
of the biggest pitfalls in the use of reshape(). I have spent a lot of time debugging reshape() commands
in which I have not been careful reverse the meaning of reshape argument names.

Notice that extraneous columns from the long format can be dropped by specifying their names in a
vector of strings passed to the drop parameter.

When we create a dataframe using reshape() it also contains information about what the original
dataframe looked like so we can take the dataframe back to its original shape by passing it to reshape()
again with no arguments.

3.5.2 Going from Wide Format to Long

If we were starting with the wide format (and had not previously used reshape() with this dataset), we
could use reshape() to change it to long format. We must again be careful about ignoring argument names.
If we have a data set w of the form

date a b c d e
1990-10-01 -0.1483844 -0.08231648 0.26355277 -1.52749429 -0.1188918
1990-10-02 2.3981684 -0.56833820 -0.16736626 0.64116497 0.7249889
1990-10-03 -1.6494030 -0.86961966 -0.40232451 -0.85386200 1.8626587
...

we could create the long version of it using

> longh<-reshape(w,idvar=’date’,varying=names(w)[2:6],
+ v.names=’return’,timevar=’firm’,times=names(w)[2:6],direction=’long’)
> longh

date firm return
1990-10-01.a 1990-10-01 a -0.14838438
1990-10-02.a 1990-10-02 a 2.39816839
1990-10-03.a 1990-10-03 a -1.64940297
1990-10-04.a 1990-10-04 a -0.72549914
1990-10-05.a 1990-10-05 a -0.69929495
...

22

The first column printed here consists of the row names, which we can ignore in this case. Notice that the
varying parameter specifies which columns to use by column number (not the number IN the column name).
Alternatively, one could pass a vector of column names. The function attempts to be clever about parsing
the names but there are additional parameters that can be passed to help it if necessary. In particular
we pass the column names again to the argument times to avoid getting numeric id’s instead of names.
Since the authors make assumptions about what the dimensions mean, we use the parameters v.names and
timevar to give names to our columns. The default values (at least for timevar) are likely to be misleading.
I typically strip out the row names (i.e., ”1990-10-01.a”) created by reshape().

A side note: if the data comes in long format, the programmer will often want to apply functions to all
the observations, by groups. The R method for doing this is described in section 10.3.3.

3.6 A Faster Reshape
Reshaping using the default package can be quite slow on large datasets and the syntax is not very intuitive.
The reshape2 package provides an alternative approach that is an order of magnitude faster and has a
convenient (though I wouldn’t describe it as intuitive) interface. In the context of reshape2, the word melt
means to transform the data into long format. On the other hand cast means to transform long format data
into wide format. When casting, variables are can be specified using formula notation. Our long-to-wide
example from above (section 3.5.1) could have been written

> # Long to wide transformation
> dcast(h,date ~ id, value.var="Return")

Notice that we specified the variable that will define our rows on the left hand side of the formula and the
one that will define our columns on the right hand side. If instead of date we had two identifying variables
(say, year and month) we could have specified both using the addition sign

> # Long to wide transformation with two identifiers
> dcast(h,year + month ~ id, value.var="Return")

to get two idenfiying columns. There are a few versions of cast(), depending on the type of output we want.
The function dcast() returns a dataframe and the help file for cast.data.frame() is the helpful one.

Our wide-to-long example above (section 3.5.2) could have been

> # Wide to long transformation
> melt(w,id = "date",variable.name="firm",value.name="return")

Note that id can be a vector of identifying variables. We could also specify which columns to use as values
using the measure.vars parameter. Otherwise all available columns besides the id are used.

I have only illustrated the most basic and common uses of these functions. They can aggregate and cut
the data in many powerful ways once you get the hang of them.

4 Cross Sectional Regression

4.1 Ordinary Least Squares
Let’s consider the simplest case. Suppose we have a data frame called byu containing columns for age, salary,
and exper. We want to regresssalary on various forms of age and exper. A simple linear regression might
be

> lm(byu$salary ~ byu$age + byu$exper)

or alternately:

> lm(salary ~ age + exper,data=byu)

as a third alternative, we could “attach” the dataframe, which makes its columns available as regular variables

23

> attach(byu)
> lm(salary ~ age + exper)

Notice the syntax of the model argument (using the tilde). The above command would correspond to
the linear model

salary = β0 + β1age + β2exper + E (1)

Using lm() results in an abbreviated summary being sent to the screen, giving only the β coefficient
estimates. For more exhaustive analysis, we can save the results in as a data member or “fitted model”

> result <- lm(salary ~ age + exper + age*exper,data=byu)
> summary(result)
> myresid <- result$resid
> vcov(result)

The summary() command, run on raw data, such as byu$age, gives statistics, such as the mean and
median (these are also available through their own functions, mean and median). When run on an ols
object, summary gives important statistics about the regression, such as p-values and the R2 .

The residuals and several other pieces of data can also be extracted from result, for use in other computa
tions. The variance-covariance matrix (of the beta coefficients) is accessible through the vcov() command.

Notice that more complex formulae are allowed, including functions such as log() and sqrt(). Inter
action terms are specified using the colon between the two interacted data members. Another sytax for
interaction terms uses the asterisk, but this has the additional meaning of including each term separately as
well. Thus a synonym for the above regression would be

> result <- lm(salary ~ age*exper,data=byu)

The power term has a special meaning when specifying a regression model as well. It includes all base
terms and (up to the power indicated) cross terms. Thus

> result <- lm(salary ~ (age+exper+ranking)^2,data=byu)

includes age,exper, ranking, and the interaction terms between each two of these. If the power were 3, we
would add the interaction between all three. In order to remove terms implied by one of these expansions,
we can use the minus operator.

This syntax for model specification is potentially very useful but it causes confusion for many new users
of R who would like to include power terms explicitly in their calculations. In order to include a power
term, such as age squared, we must either first compute the values, then run the regression, or use the I()
operator, which forces computation of its argument before evaluation of the formula

> salary$agesq <- (salary$age)^2
> result <- lm(salary ~ age + agesq + log(exper) + age*log(exper),data=byu)

or

> result <- lm(salary ~ age + I(age^2) + log(exper) + age*log(exper),data=byu)

Notice that if we omit the I() operator and don’t explicitly generate a power term variable (like agesq)
then lm() will not behave as expected (it just omits power terms whose first power is already included in
the regression). There is no warning associated with this behavior so the programmer should be careful.

In order to run a regression without an intercept, we simply specify the intercept explicitly, traditionally
with a zero.

> result <- lm(smokes ~ 0 + male + female ,data=smokerdata)

24

4.2 Extracting Statistics from the Regression
The most important statistics and parameters of a regression are stored in the lm object or the summary
object. Consider the smoking example above

> output <- summary(result)
> SSR <- deviance(result)
> LL <- logLik(result)
> DegreesOfFreedom <- result$df
> Yhat <- result$fitted.values
> Coef <- result$coefficients
> Resid <- result$residuals
> s <- output$sigma
> RSquared <- output$r.squared
> CovMatrix <- s^2*output$cov
> aic <- AIC(result)

Where SSR is the residual sum of squares, LL is the log likelihood statistic, Yhat is the vector of fitted
values, Resid is the vector of residuals, s is the estimated standard deviation of the errors (assuming
homoskedasticity), CovMatrix is the variance-covariance matrix of the coefficients (also available via vcov()),
aic is the Akaike information criterion and other statistics are as named.

Note that the AIC criterion is define by R as

AIC = −2 log L(p) + 2p

where p is the number of estimated parameters and L(p) is the likelihood. Some econometricians prefer to
call AIC/N the information criterion. To obtain the Bayesian Information Criterion (or Schwartz Bayesian
Criterion) we use AIC but specify a different “penalty” parameter as follows

> sbc <- AIC(result,k=log(NROW(smokerdata)))

which means
SBC = −2 log L(p) + p log(N)

4.3 Heteroskedasticity and Friends
4.3.1 Breusch-Pagan Test for Heteroskedasticity

In order to test for the presence of heteroskedasticity, we can use the Breusch-Pagan test from the lmtest
package. Alternately we can use the the ncv.test() function from the car package. They work pretty much
the same way. After running the regression, we call the bptest() function with the fitted regression.

> unrestricted <- lm(z~x)
> bptest(unrestricted)

Breusch-Pagan test

data: unrestricted
BP = 44.5465, df = 1, p-value = 2.484e-11

This performs the “studentized” version of the test. In order to be consistent with some other software
(including ncv.test()) we can specify studentize=FALSE.

4.3.2 Heteroskedasticity (Autocorrelation) Robust Covariance Matrix

In the presence of heteroskedasticity, the ols estimates remain unbiased, but the ols estimates of the variance
of the beta coefficients are no longer correct. In order to compute the heteroskedasticity consistent covariance

25

matrix6 we use the hccm() function (from the car package) instead of vcov(). The diagonal entries are
variances and off diagonals are covariance terms.

This functionality is also available via the vcovHC() command in the sandwich package. Also in that
package is the heteroskedasticity and autocorrelation robust Newey-West estimator, available in the function
vcovHAC() or the function NeweyWest().

4.4 Linear Hypothesis Testing (Wald and F)
The car package provides a function that automatically performs linear hypothesis tests. It does either an
F or a Wald test using either the regular or adjusted covariance matrix, depending on our specifications. In
order to test hypotheses, we must construct a hypothesis matrix and a right hand side vector. For example,
if we have a model with five parameters, including the intercept and we want to test against

H0 : β0 = 0, β3 + β4 = 1

The hypothesis matrix and right hand side vector would be
1
0

0
0

0
0

0
1

0
1

β = 0
1

and we could implement this as follows

> unrestricted <- lm(y~x1+x2+x3+x4)
> rhs <- c(0,1)
> hm <- rbind(c(1,0,0,0,0),c(0,0,0,1,1))
> linear.hypothesis(unrestricted,hm,rhs)

Notice that if unrestricted is an lm object, an F test is performed by default, if it is a glm object, a
Wald χ2 test is done instead. The type of test can be modified through the type argument.

Also, if we want to perform the test using heteroskedasticity or autocorrelation robust standard errors,
we can either specify white.adjust=TRUE to use white standard errors, or we can supply our own covariance
matrix using the vcov parameter. For example, if we had wished to use the Newey-West corrected covariance
matrix above, we could have specified

> linear.hypothesis(unrestricted,hm,rhs,vcov=NeweyWest(unrestricted))

See the section on heteroskedasticity robust covariance matrices for information about the NeweyWest() func
tion. We should remember that the specification white.adjust=TRUE corrects for heteroskedasticity using an
improvement to the white estimator. To use the classic white estimator, we can specify white.adjust="hc0".

4.5 Weighted and Generalized Least Squares
You can do weighted least squares by passing a vector containing the weights to lm().

> result <- lm(smokes ~ 0 + male + female ,data=smokerdata,weights=myweights)

Generalized least squares is available through the lm.gls() command in the MASS package. It takes a
formula, weighting matrix, and (optionally) a dataframe from which to get the data as arguments.

The glm() command provides access to a plethora of other advanced linear regression methods. See the
help file for more details.

4.6 Models With Factors/Groups
There is a separate datatype for qualitative factors in R. When a variable included in a regression is of type
factor, the requisite dummy variables are automatically created. For example, if we wanted to regress the
adoption of personal computers (pc) on the number of employees in the firm (emple) and include a dummy
for each state (where state is a vector of two letter abbreviations), we could simply run the regression

6obtaining the White standard errors, or rather, their squares.

26

> summary(lm(pc~emple+state))

Call:
lm(formula = pc ~ emple + state)

Residuals:
Min 1Q Median 3Q Max

-1.7543 -0.5505 0.3512 0.4272 0.5904

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.572e-01 6.769e-02 8.232 <2e-16 ***
emple 1.459e-04 1.083e-05 13.475 <2e-16 ***
stateAL -4.774e-03 7.382e-02 -0.065 0.948
stateAR 2.249e-02 8.004e-02 0.281 0.779
stateAZ -7.023e-02 7.580e-02 -0.926 0.354
stateDE 1.521e-01 1.107e-01 1.375 0.169

...

stateFL -4.573e-02 7.136e-02 -0.641 0.522
stateWY 1.200e-01 1.041e-01 1.153 0.249

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4877 on 9948 degrees of freedom
Multiple R-Squared: 0.02451, Adjusted R-squared: 0.01951
F-statistic: 4.902 on 51 and 9948 DF, p-value: < 2.2e-16

The three dots indicate that some of the coefficients have been removed for the sake of brevity.
In order to convert data (either of type string or numeric) to a factor, simply use the factor() command.

It can even be used inside the regression. For example, if we wanted to do the same regression, but by a
numeric code specifying an area, we could use the command

> myout <- lm(pc~emple+factor(naics6))

which converts naics6 into a factor, generates the appropriate dummies, and runs a standard regression.

5 Special Regressions

5.1 Fixed/Random Effects Models
Warning: The definitions of fixed and random effects models are not standardized across disciplines. I
describe fixed and random effects estimation as these terms are generally used by econometricians. The
terms “fixed” and “random” have historical roots and are econometrically misleading.

Within the context of economics, fixed and random effects estimators are panel data models that account
for cross sectional variation in the intercept. Letting i denote the cross sectional index (or the one by which
data is grouped) and t the time index (or the index that varies within a group), a standard fixed effects
model can be written

yit = α + ui + βXit + Eit. (2)

Essentially, each individual has a different time-invariant intercept (α + ui). Usually we are interested in β
but not any of the ui. A random effects model has the same mean equation, but imposes the additional
restriction that the individual specific effect is uncorrelated with the explanatory variables Xit. That is,
E[uiXit] = 0. Econometrically this is a more restrictive version of the fixed effects estimator (which allows

27

for arbitrary correlation between the “effect” and exogenous variables). One should not let the unfortunate
nomenclature confuse the relationship between these models.

5.1.1 Fixed Effects

A simple way to do a fixed effects estimation, particularly if the cross sectional dimension is not large, is
to include a dummy for each individual—that is, make the cross sectional index a factor. If i identifies the
individuals in the sample, then

> lm(y~factor(i)+x)

will do a fixed effects estimation and will report the correct standard errors on β. Unfortunately, in cases
where there are many individuals in the sample and we are not interested in the value of their fixed effects,
the lm() results are awkward to deal with and the estimation of a large number of ui coefficients could
render the problem numerically intractable.

A more common way to estimate fixed effects models is to remove the fixed effect by time demeaning
each variable (the so called within estimator). Then equation (2) becomes

¯(yit − ȳi) = α + β(Xit − Xi) + ζit. (3)

Most econometric packages (for example, stata’s xtreg) use this method by default when doing fixed effects
estimation. Notice that if we were to manually compute these variables and use a standard linear model,
the reported standard errors will be biased downward. The σ̂2 reported by lm() is computed using

SSR
σ̂2 =

NT − K

whereas the true standard errors in this fixed effects regression are

SSR
σ̂2 =

N(T − 1) − K

For small T this can be an important correction.
Another, generally less popular, way to do fixed effects estimation is to use the first differences estimator

(yit − yi(t−1)) = α + β(Xit − Xi(t−1)) + ζit.

which can be computed by hand in a manner similar to the within estimator.
These calculations can be performed by hand in R, but it is easier to use the plm package, which does

both fixed and random effects estimation and reports the appropriate standard errors. As the input it takes
a standard dataframe. If you do not specify which variables are the individual and time indexes, it assumes
the first two variables in the dataframe are these indexes. It also assumes that the dataframe is grouped by
individual and sorted by time. Personally I always specify the index variables to avoid incorrect grouping.
When specifying indexes, the individual identifier is the first index and the time identifier is the second. For
example

> plm(y~x,data=mydataframe,index=c("i","t"),model="within")

performs a “within” estimation. We could instead use model=‘‘fd’’ to calculate the first differences esti
mator7

Notice that we can also do panel data regression for generalized models (for example, a logistic or probit
model) using the pglm package. The syntax for pglm() is an amalgam of the usage of glm() and plm() and
is therefore an easy extension from either.

The authors of plm have created a very good writeup describing the various panel estimators (both fixed
and random effects) and how to use them in a plm context, which can be accessed by typing

> vignette("plm",package="plm")
7For additional description of the plm package and fixed/random effects models, see Croissant, Yves and Millo G. “Panel

Data Econometrics in R: The plm Package.” Journal of Statistical Software. July 2008. Vol. 27 (2).

28

5.1.2 Random Effects

The package nlme contains functions for doing random effects regression (but not fixed effects—the docu
mentation refers to the statistics interpretation of the term “fixed effect”) in a linear or nonlinear framework.
Suppose we had a linear model with a random effect on the sic3 code.

ldsal = (α + αi) + βlempit + γldnptit + Eit

We could fit this model using

> lme(ldsal~lemp+ldnpt,random=~1|sic3)

In general the random effects will be after the vertical bar in the random parameter of the model. Placing
a 1 between the tilde and vertical bar indicates that the random effect is an intercept term. If we wanted a
random effect on one of the exogenous variables as well as the intercept, we could put that variable in the
same place as the 1. For example

> lme(ldsal~lemp+ldnpt,random=~1+lemp|sic3)

corresponds to
ldsal = (α + αi) + (β + βi)lempit + γldnptit + Eit

We can also use the plm() with model=‘‘random’’ to do a random effects estimation.
For nonlinear random effects models, we would use nlme() instead of lme().

5.2 Qualitative Response
5.2.1 Logit/Probit

There are several ways to do logit and probit regressions in R. The simplest way may be to use the glm()
command with the family option.

> h <- glm(c~y, family=binomial(link="logit"))

or replace logit with probit for a probit regression. The glm() function produces an object similar to the
lm() function, so it can be analyzed using the summary() command. In order to extract the log likelihood
statistic, use the logLik() command.

> logLik(h)
‘log Lik.’ -337.2659 (df=1)

One thing to be aware of when using glm() and a link function is the way the predict() function works.
If you use the default parameters, you get the predicted value in terms of the input to the link function. If
you want a predicted value in terms of probabilities (the scale of the right hand variable) then you need to
pass the parameter type="response" to predict(). Alternately, if we are using the probit link function, we
can get the predicted values using the default method and then use pnorm() to translte them into estimated
probabilities.

Measures of fit for logit and probit models are viewed with a skeptical eye in the statistics community.
Nevertheless many reviewers want to see pseudo R-squared measures of these types of models. There are
several possible measures we may call “pseudo R-squared.” Probably the most popular and best justified is
the McFadden measure

lnL̂(Mfull)
R2 .McF adden = 1 −

lnL̂(Mnull)
It is one minus the ratio of the log likelihood of the full model and the log likelihood of the null model
(intercept only). There are several packages that compute this and other measures8, but I find it simplest to
note that in the usual case that the explanatory variable is always 0 or 1, the deviance reported by glm() is
-2 times the log likelihood. Thus we can write a one-line function to return the McFadden pseudo R-squared

8Perhaps start with pR2 from the pscl package

29

> R2 <- function(m) 1 - m$deviance/m$null.deviance
> mymodel <- glm(y~x1+x2,family=binomial(link=logit))
> R2(mymodel)
[1] 0.01469101

The second most common measure is the Cox and Snell measure � � 2

ˆ N
L(Mnull)

R2
CS = 1 − ,

L̂(Mfull)

which is similarly easy to compute by hand.

5.2.2 Multinomial Logit

There is a function for performing a multinomial logit estimation in the nnet package called multinom().
To use it, simply transform our dependent variable to a vector of factors (including all cases) and use syntax
like a normal regression. If our factors are stored as vectors of dummy variables, we can use the properties
of decimal numbers to create unique factors for all combinations. Suppose my factors are pc, inetacc, and
iapp, then

> g <- pc*1 + inetacc*10 + iapp*100
> multinom(factor(g)~pc.subsidy+inet.subsidy+iapp.subsidy+emple+msamissing)

and we get a multinomial logit using all combinations of factors.
Multinomial probit models are characteristically ill conditioned. A method that uses markov chain monte

carlo simulations, mnp(), is available in the MNP package.

5.2.3 Ordered Logit/Probit

The MASS package has a function to perform ordered logit or probit regressions, called polr(). If Sat is an
ordered factor vector, then

> house.plr <- polr(Sat ~ Infl + Type + Cont, method="probit")

5.3 Tobit and Censored Regression
In order to estimate a model in which the values of some of the data have been censored, we use the survival
package. The function survreg() performs this type of regression, and takes as its dependent variable a
Surv object. The best way to see how to do this type of regression is by example. Suppose we want to
regress y on x and z, but a number of y observations were censored on the left and set to zero.

result <- survreg(Surv(y,y>0,type=’left’) ~ x + z, dist=’gaussian’)

The second argument to the Surv() function specifies whether each observation has been censored or not
(one indicating that it was observed and zero that it was censored). The third argument indicates on which
side the data was censored. Since it was the lower tail of this distribution that got censored, we specify left.
The dist option passed to the survreg is necessary in order to get a classical Tobit model.

5.4 Heckman-Type Selection Models
It is frequently the case that we have a dataset in which the dependent variable is endogenously missing.
The classic example of this type of situation has wage as the dependent variable and a set of individual
characteristics on the right hand. Because some people do not work, their wage is missing. However, we can
take the full sample (employed and unemployed) to do a first stage probit regression where the dependent
variable is employed. We can then take the fitted values (the stuff inside the probit function, not the fitted
probabilities) and create the inverse mills ratio. We can then add the inverse mills ratio for individuals with

30

jobs to the second stage regression, thereby correcting for the sample selection bias. This Heckman selection-
bias correction is quite common in academic literature. There is also a one-step maximum likelihood method
for solving it that has some better statistical properties.

The two-step procedure is easy enough to do manually (do a probit regression, get predicted values,
create your own inverse mills ratio, etc.) but it is easy to get wrong. The sampleSelection package does this
type of corrected regression as well as others of a similar type. The first argument is the function for the
first stage probit (the dependent variable should be T/F where T means the observation will be included in
the second regression). The second argument is the equation of interest. For example

> library(sampleSelection)
> corrected <- heckit(employed ~ age + educ + race, wage ~ educ + race + prev,data=G)
> corrected2 <- selection(employed ~ age + educ + race, wage ~ educ + race + prev,data=G,method="2step")

These two are equivalent. Heckit() does the most common case and defaults to the two-stage method while
selection() has many other possibilities and defaults to the maximum likelihood estimator.

The manual equivalent of the above could be

> firststage <- glm(employed ~ age + educ + race,data=G,family=binomial(link=probit))
> predicted1 <- predict(firststage, G, type="link")
> G$invmills <- dnorm(predicted1)/pnorm(predicted1)
> secondstage <- lm(employed ~ educ + race + prev + invmills,data=G[G$empolyed,])

I often find it convenient to do this computation manually.

5.5 Quantile Regression
Ordinary least squares regression methods produce an estimate of the expectation of the dependent variable
conditional on the independent. Fitted values, then, are an estimate of the conditional mean. If instead of
the conditional mean we want an estimate of the expected conditional median or some other quantile, we
use the rq() command from the quantreg package. The syntax is essentially the same as lm() except that
we can specify the parameter tau, which is the quantile we want (it is between 0 and 1). By default, tau=.5,
which corresponds to a median regression—another name for least absolute deviation regression.

5.6 Robust Regression - M Estimators
For some datasets, outliers influence the least squares regression line more than we would like them to. One
solution is to use a minimization approach using something besides the sum of squared residuals (which
corresponds to minimizing the L2 norm) as our objective function. Common choices are the sum of absolute
deviations (L1) and the Huber method, which is something of a mix between the L1 and L2 methods. R
implements this robust regression functionality through the rlm() command in the MASS package. The
syntax is the same as that of the lm() command except that it allows the choice of objective function to
minimize. That choice is specified by the psi parameter. Possible implemented choices are psi.huber,
psi.hampel, and psi.bisquare.

In order to specify a custom psi function, we write a function that returns ψ(x)/x if deriv=0 and ψ'(x)
for deriv=1. This function than then be passed to rlm() using the psi parameter.

5.7 Nonlinear Least Squares
Sometimes the economic model just isn’t linear. R has the capability of solving for the coefficients a gener
alized least squares model that can be expressed

Y = F (X; β) + E (4)

Notice that the error term must be additive in the functional form. If it is not, transform the model equation
so that it is. The R function for nonlinear least squares is nls() and has a syntax similar to lm(). Consider

31

the following nonlinear example.
E

Y = (5)
1 + eβ1X1+β2X2

log(Y) = − log(1 + e β1X1+β2X2) + log(E) (6)

The second equation is the transformed version that we will use for the estimation. nls() takes the formula
as its first argument and also requires starting estimates for the parameters. The entire formula should be
specified, including the parameters. R looks at the starting values to see which parameters it will estimate.
> result <- nls(log(Y)~-log(1+exp(a*X1+b*X2)),start=list(a=1,b=1),data=mydata)
stores estimates of a and b in an nls object called result. Estimates can be viewed using the summary()
command. In the most recent versions of R, the nls() command is part of the base package, but in older
versions, we may have to load the nls package.

5.8 Two Stage Least Squares on a Single Structural Equation
For single equation two stage least squares, the easiest function is probably tsls() from the sem package.
If we want to find the effect of education on wage while controlling for marital status but think educ is
endogenous, we could use motheduc and fatheduc as instruments by running
> library(sem)
> outputof2sls <- tsls(lwage~educ+married,~married+motheduc+fatheduc)
The first argument is the structural equation we want to estimate and the second is a tilde followed by all
the instruments and exogenous variables from the structural equation—everything we need for the Z matrix

' in the 2SLS estimator β̃ = (X ' Z(Z ' Z)−1Z ' X)−1X ' Z(Z ' Z)−1Z y.
The resulting output can be analyzed using summary() and other ols analysis functions. Note that since

this command produces a two stage least squares object, the summary statistics, including standard errors,
will be correct. Recall that if we were to do this using an actual two stage approach, the resulting standard
errors would be bogus.

5.9 Systems of Equations
The commands for working with systems of equations (including instrumental variables, two stage least
squares, seemingly unrelated regression and variations) are contained in the systemfit package. In general
these functions take as an argument a list of regression models. Note that in R an equation model (which
must include the tilde) is just another data type. Thus we could create a list of equation models and a
corresponding list of labels using the normal assignment operator
> demand <- q ~ p + d
> supply <- q ~ p + f + a
> system <- list(demand,supply)
> labels <- list("demand","supply")

5.9.1 Seemingly Unrelated Regression

Once we have the system and (optionally) labels set up, we can use systemfit() with the SUR option to
specify that the system describes a seemingly unrelated regression.
> resultsur <- systemfit("SUR",system,labels)

5.9.2 Two Stage Least Squares on a System

Instruments can be used as well in order to do a two stage least squares on the above system. We create a
model object (with no left side) to specify the instruments that we will use and specify the 2SLS option
> inst <- ~ d + f + a
> result2sls <- systemfit("2SLS",system,labels,inst)
There are also routines for three stage least squares, weighted two stage least squares, and a host of others.

32

6 Time Series Regression
R has a special datatype, ts, for use in time series regressions. Vectors, arrays, and dataframes can be coerced
into this type using the ts() command for use in time series functions.

> datats <- ts(data)

Most time-series related functions automatically coerce the data into ts format, so this command is often
not necessary.

6.1 Differences and Lags
We can compute differences of a time series object using the diff() operator, which takes as optional
arguments which difference to use and how much lag should be used in computing that difference. For
example, to take the first difference with a lag of two, so that wt = vt − vt−2 we would use

> w <- diff(v,lag=2,difference=1)

By default, diff() returns the simple first difference of its argument.
There are two general ways of generating lagged data. If we want to lag the data directly (without

necessarily converting to a time series object), one way to do it is to omit the first few observations using
the minus operator for indices. We can then remove the last few rows of un-lagged data in order to achieve
conformity. The commands

> lagy <- y[-NROW(y)]
> ysmall <- y[-1]

produce a once lagged version of y relative to ysmall. This way of generating lags can get awkward if we
are trying combinations of lags in regressions because for each lagged version of the variable, conformability
requires that we have a corresponding version of the original data that has the first few observations removed.

Another way to lag data is to convert it to a time series object and use the lag() function. It is very
important to remember that this function does not actually change the data, it changes an attribute of a time
series object that indicates where the series starts. This allows for more flexibility with time series functions,
but it can cause confusion for general functions such as lm() that do not understand time series attributes.
Notice that lag() only works usefully on time series objects. For example, the code snippet

> d <- a - lag(a,-1)

creates a vector of zeros named d if a is a normal vector, but returns a ts object with the first difference of
the series if a is a ts object. There is no warning issued if lag() is used on regular data, so care should be
exercised.

In order to use lagged data in a regression, we can use time series functions to generate a dataframe with
various lags of the data and NA characters stuck in the requisite leading and trailing positions. In order
to do this, we use the ts.union() function. Suppose X and Y are vectors of ordinary data and we want to
include a three times lagged version of X in the regression, then

> y <- ts(Y)
> x <- ts(X)
> x3 <- lag(x,-3)
> d <- ts.union(y,x,x3)

converts the vectors to ts data and forms a multivariate time series object with columns yt, xt, and xt−3.
Again, remember that data must be converted to time series format before lagging or binding together with
the union operator in order to get the desired offset. The ts.union() function automatically decides on
a title for each column, must as the data.frame() command does. We can also do the lagging inside the
union and assign our own titles

> y <- ts(Y)
> x <- ts(X)
> d <- ts.union(y,x,x1=lag(xt,-1),x2=lag(xt,-2),x3=lag(xt,-3))

33

It is critical to note that the lag operator works in the opposite direction of what one might
expect: positive lag values result in leads and negative lag values result in lags.

When the resulting multivariate time series object is converted to a data frame (as it is read by ls() for
example), the offset will be preserved. Then

> lm(y~x3,data=d)

will then regress yt on xt−3.
Also note that by default observations that have a missing value (NA) are omitted. This is what we want.

If the default setting has somehow been changed, we should include the argument na.action=na.omit in
the lm() call. In order to get the right omission behavior, it is generally necessary to bind all the data we
want to use (dependent and independent variables) together in a single union.

In summary, in order to use time series data, convert all data to type ts, lag it appropriately (using the
strange convention that positive lags are leads), and bind it all together using ts.union(). Then proceed
with the regressions and other operations.

6.2 Filters
6.2.1 Canned AR and MA filters

One can pass data through filters constructed by polynomials in the lag operator using the filter() com
mand. It handles two main types of filters: moving average or “convolution” filters and autoregressive or
“recursive” filters. Convolution filters have the form

y = (a0 + a1L + . . . + apLp)x

while recursive filters solve
y = (a1L + a2L2 + . . . + apLp)y + x

In both cases, x is the input to the filter and y the output. If x is a vector of innovations, the convolution
filter generates a moving average series and the recursive filter generates an autoregressive series. Notice
that there is no a0 term in the recursive filter (it would not make sense theoretically). The recursive filter
can equivalently be thought of as solving

y = (1 − a1L − a2L2 − . . . − apLp)−1 x

When we use the filter() command, we supply the {an} vector as follows

> y <- filter(x,c(1,.2,-.35,.1),method="convolution",sides=1)

The data vector x may be a time series object or a regular vector of data, and the output y will be a ts
object. It is necessary to specify sides=1 for a convolution filter, otherwise the software tries to center the
filter (in positive and negative lags), which is not usually what the econometrician wants. The recursive
filter ignores the sides keyword. Notice that (except for data loss near the beginning of the series) we can
recover the data from y above using a recursive filter

> X<-filter(y,c(-.2,.35,-.1),method="recursive")

6.2.2 Manual Filtration

If the filter() command does not work for our application—or we just prefer doing things ourselves—we
can manually generate the lags and compute the result. We could imitate the convolution filter above with

> x <- ts(x)
> y <- x+.2*lag(x,-1)-.35*lag(x,-2)+.1*lag(x,-3)

The autoregressive filter would require a for loop to reproduce. Remember that the lag method of
filtering will only work if x is a ts object.

34

6.2.3 Hodrick Prescott Filter

Data may be passed through the Hodrick-Prescott filter a couple of ways, neither of which require the data
to be a time series vector. First, we can filter manually using the function defined below (included without
prompts so it may be copied and pasted into R)

hpfilter <- function(x,lambda=1600){
eye <- diag(length(x))
result <- solve(eye+lambda*crossprod(diff(eye,lag=1,d=2)),x)
return(result)

}

where lambda is the standard tuning parameter, often set to 1600 for macroeconomic data. Passing a series
to this function will return the smoothed series.

The package mFilter contains hpfilter() which performs this filtration automatically. To pass a lambda
value, we can specify type="lambda" and then pass freq=1600 or whatever lambda value we would like to
use.

6.2.4 Kalman Filter

R has multiple functions for smoothing, filtering, and evaluating the likelihood of a state space model using
the Kalman filter. The most frequently mentioned is the KalmanLike family of functions, but they work
only for univariate state space models (that is, models in which there is only one variable in the observations
equation). For this reason, the methods in the dse1 package (SS.l() and others) and sspir package are often
preferred. Because of their greater simplicity, I describe the functions in the sspir package.

First we use a function to generate a state space model object, then we can Kalman filter it and optionally
smooth the filtered results.. The function for generating the state space object is SS(). Recall that a state
space model can be written

' yt = F θt + vtt

θt = Gtθt−1 + wt

where
vt ∼ N(0, Vt), wt ∼ N(0,Wt).

θt is the unobserved state vector, and yt is the observed data vector. For Kalman filtering, the initial value
of θ is drawn from N(m0, C0).

Because of the possibly time varying nature of this general model, the coefficient matrices must be given
as functions. One caveat to remember is that the input Fmat is the transpose of Ft. After writing functions to
input Ft, Gt, Vt,Wt and generating the input variables φ (a vector of parameters to be used by the functions
that generate Ft, Gt, Vt, and Wt), m0, and C0, we run SS() to create the state space model. Then we
run kfilter() on the model object to filter and obtain the log likelihood—it returns a copy of the model
with estimated parameters included. If we want to run the Kalman smoother, we take the output model of
kfilter() and run smoother() on it.

The functions in package dse1 appear more flexible but more complicated to initialize.

6.3 ARIMA/ARFIMA
The arima() command from the ts() package can fit time series data using an autoregressive integrated
moving average model.

Δd yt = µ + γ1Δd yt−1 + ... + γpΔd yt−p + Et + θ1Et−1 + ... + θqEt−q (7)

where
Δyt = yt − yt−1 (8)

The parameters p, d, and q specify the order of the arima model. These values are passed as a vector
c(p,d,q) to arima(). Notice that the model used by R makes no assumption about the sign of the θ terms,
so the sign of the corresponding coefficients may differ from those of other software packages (such as S+).

35

> ar1 <- arima(y,order=c(1,0,0))
> ma1 <- arima(y,order=c(0,0,1))

Data-members ar1 and ma1 contain estimated coefficients obtained by fitting y with an AR(1) and MA(1)
model, respectively. They also contain the log likelihood statistic and estimated standard errors.

Sometimes we want to estimate a high order arima model but set the first few coefficients to zero (or
some other value). We do this using the fixed parameter. It takes a vector of the same length as the number
of estimable parameters. An NA entry indicates you want the corresponding parameter to be estimated. For
example, to estimate

yt = γ2yt−2 + θ1Et−1 + Et (9)

we could use

> output <- arima(y,order=c(2,0,1),fixed=c(0,NA,NA))

I have had reports that if the fixed parameter is used, the parameter transform.pars=FALSE should also
be passed.

If we are modeling a simple autoregressive model, we could also use the ar() command, from the ts
package, which either takes as an argument the order of the model or picks a reasonable default order.

> ar3 <- ar(y,order.max=3)

fits an AR(3) model, for example.
The function fracdiff(), from the fracdiff package fits a specified ARMA(p,q) model to our data and

finds the optimal fractional value of d for an ARFIMA(p,d,q). Its syntax differs somewhat from the arima()
command.

> library(fracdiff)
> fracdiff(y,nar=2,nma=1)

finds the optimal d value using p=2 and q=1. Then it estimates the resulting ARFIMA(p,d,q) model.

6.4 ARCH/GARCH
6.4.1 Basic GARCH–garch()

R can numerically fit data using a generalized autoregressive conditional heteroskedasticity model GARCH(p,q),
written

y = C + E (10)
σt
2 = α0 + δ1σt

2
−1 + ... + δpσt

2
−p + α1Et

2 + ... + αqEt
2
−q (11)

setting p = 0 we obtain the ARCH(q) model. The R command garch() comes from the tseries package.
It’s syntax is

> archoutput <- garch(y,order=c(0,3))
> garchoutput <- garch(y,order=c(2,3))

so that archoutput is the result of modeling an ARCH(3) model and garchoutput is the result of modeling
a GARCH(2,3). Notice that the first value in the order argument is p, the number of deltas, and the second
argument is q, the number of alpha parameters. The resulting coefficient estimates will be named a0, a1,
. . . for the alpha and b1, b2, . . . for the delta parameters. Estimated values of the conditional standard
deviation process are available via

fitted(garchoutput)

36

6.4.2 Advanced GARCH–garchFit()

Of course, we may want to include exogenous variables in the mean equation (10), which garch() does not
allow. For this we can use the more flexible function garchFit() in the fSeries package.
> garchFitoutput <- garchFit(~arma(0,1)+garch(2,3),y)
fits the same model as above, but the mean equation now is an MA(1).

This function returns an S4 class object, which means to access the data inside we use the @ operator
> coef <- garchFitoutput@fit$coef
> fitted <- garchFitoutput@fit$series$h
Here h gives the estimated σ2 process, not σ, so it is the square of the “fitted” values from garch(), above.

As of this writing, garchFit() produces copious output as it estimates the parameters. Some of this can
be avoided by passing the parameter trace=FALSE.

6.4.3 Miscellaneous GARCH–Ox G@RCH

fSeries also provides an interface to some functions from the Ox G@RCH9 software, which is not free in the same
sense as R is, although as of this writing it was free for academic use. That interface provides routines for
estimation of EGARCH, GJR, APARCH, IGARCH, FIGARCH, FIEGARCH, FIAPARCH and HYGARCH
models, according to the documentation.

6.5 Correlograms
It is common practice when analyzing time series data to plot the autocorrelation and partial autocorrelation
functions in order to try to guess the functional form of the data. To plot the autocorrelation and partial
autocorrelation functions, use the ts package functions acf() and pacf(), respectively. The following com
mands plot the ACF and PACF on the same graph, one above (not on top of) the other. See section 7.6.1
for more details on arranging multiple graphs on the canvas.
> par(mfrow=c(2,1))
> acf(y)
> pacf(y)
These functions also return the numeric values of the ACF and PACF functions along with some other
output. Plotting can be suppressed by passing plot=F.

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

AC
F

Series y

0 5 10 15 20 25

−0
.2

0.
4

0.
8

Lag

Pa
rti

al
 A

CF

Series y

9Ox and G@RCH are distributed by Timberlake Consultants Ltd. Timberlake Consultants can be contacted through the
web site http://www.timberlake.co.uk

37

http://www.timberlake.co.uk

To plot confidence intervals that are based on Bartlett’s standard errors, pass the keyword ci.type="ma"
to acf(). This may be useful, for example, at the identification stage of a Box-Jenkins analysis when
inspecting the ACF in order to identify what type of ARIMA model we might want to use. This keyword is
documented in the help file for plot.acf()10 .

6.6 Predicted Values
The predict() command takes as its input an lm, glm, arima, or other regression object and some options
and returns corresponding predicted values. For time series regressions, such as arima() the argument is
the number of periods into the future to predict.

> a <- arima(y,order=c(1,1,2))
> predict(a,5)

returns predictions on five periods following the data in y, along with corresponding standard error estimates.

6.7 Time Series Tests
6.7.1 Durbin-Watson Test for Autocorrelation

The Durbin-Watson test for autocorrelation can be administered using the durbin.watson() function from
the car package. It takes as its argument an lm object (the output from an lm() command) and returns
the autocorrelation, DW statistic, and an estimated p-value. The number of lags can be specified using the
max.lag argument. See help file for more details.

> library(car)
> results <- lm(Y ~ x1 + x2)
> durbin.watson(results,max.lag=2)

6.7.2 Box-Pierce and Breusch-Godfrey Tests for Autocorrelation

In order to test the residuals (or some other dataset) for autocorrelation, we can use the Box-Pierce test
from the ts package.

> library(ts)
> a <- arima(y,order=c(1,1,0))
> Box.test(a$resid)

Box-Pierce test

data: a$resid
X-squared = 18.5114, df = 1, p-value = 1.689e-05

would lead us to believe that the model may not be correctly specified, since we soundly reject the Box-Pierce
null. If we want to the Ljung-Box test instead, we include the parameter type="Ljung-Box".

For an appropriate model, this test is asymptotically equivalent to the Breusch-Godfrey test, which is
available in the lmtest() package as bgtest(). It takes a fitted lm object instead of a vector of data as an
argument.

6.7.3 Dickey-Fuller Test for Unit Root

The augmented Dickey-Fuller test checks whether a series has a unit root. The default null hypothesis is
that the series does have a unit root. Use the adf.test() command from the tseries package for this test.

10Thanks to Graeme Walsh for pointing this issue out.

38

> library(tseries)
> adf.test(y)

Augmented Dickey-Fuller Test

data: y
Dickey-Fuller = -2.0135, Lag order = 7, p-value = 0.5724
alternative hypothesis: stationary

6.8 Vector Autoregressions (VAR)
The standard ar() routine can do the estimation part of a vector autoregression. In order to do this type of
regression, one need only bind the vectors together as a dataframe and give that dataframe as an argument
to ar(). Notice that ar() by default uses AIC to determine how many lags to use, so it may be necessary
to specifiy aic=FALSE and/or an order.max parameter. Remember that if aic is TRUE (the default), the
function uses AIC to choose a model using up to the number of lags specified by order.max.

> y <- ts.union(Y1,Y2,Y3)
> var6 <- ar(y,aic=FALSE,order=6)

Unfortunately, the ar() approach does not have built in functionality for such things as predictions and
impulse response functions. The reader may have to code those up by hand if necessary.

Alternately, the ARMA() function in the dse1 package can fit multivariate time series regression in great
generality, but the programming overhead is correspondingly great.

There is also a vector autoregression package on CRAN named VAR, but I have not used it.

7 Plotting
One of R’s strongest points is its graphical ability. It provides both high level plotting commands and the
ability to edit even the smallest details of the plots.

The plot() command opens a new window and plots the the series of data given it. By default a single
vector is plotted as a time series line. If two vectors are given to plot(), the values are plotted in the x-y
place using small circles. The type of plot (scatter, lines, histogram-like, etc.) can be determined using the
type argument. Strings for the main, x, and y labels can also be passed to plot.

> plot(x,y,type="l", main="X and Y example",ylab="y values",xlab="x values")

plots a line in the x-y plane, for example. Colors, symbols, and many other options can be passed to plot().
For more detailed information, see the help system entries for plot() and par().

After a plotting window is open, if we wish to superimpose another plot on top of what we already have,
we use the lines() command or the points() command, which draw connected lines and scatter plots,
respectively. Many of the same options that apply to plot() apply to lines() and a host of other graphical
functions.

We can plot a line, given its coefficients, using the abline() command. This is often useful in visualizing
the placement of a regression line after a bivariate regression

> results <- lm(y ~ x)
> plot(x,y)
> abline(results$coef)

abline() can also be used to plot a vertical or horizontal line at a particular value using the parameters v
or h respectively.

To draw a nonlinear deterministic function, like f(x) = x3, we don’t need to generate a bunch of data
that lie on the function and then connect those dots. We can plot the function directly using the curve()
function. If we want to lay the function on top of an already created plot, we can pass the add=TRUE
parameter.

39

> x <- 1:10
> y <- (x+rnorm(10))^3
> plot(x,y)
> curve(x^3,add=TRUE)

7.1 Plotting Empirical Distributions
7.1.1 Histograms

We typically illustrate the distribution of a vector of data by separating it into bins and plotting it as a
histogram. This functionality is available via the hist() command. This takes the raw data as an input
and draws a histogram with minimal fuss. However, I find that it is not very flexible and, to my eyes, is
not very pretty. For higher quality histograms, I frequently generate my own bins and counts and use the
barplot() function. It is very flexible and makes beautiful bar graphs of many different styles

7.1.2 Kernel Density Estimates

Histograms can often hide true trends in the distribution because they depend heavily on the choice of bin
width. A more reliable way of visualizing univariate data is the use of a kernel density estimator, which gives
an actual empirical estimate of the PDF of the data. The density() function computes a kernel estimator
and can be plotted using the plot() command.

> d <- density(y)
> plot(d,main="Kernel Density Estimate of Y")

0 5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Kernel Density Estimate of Y

N = 25 Bandwidth = 1.386

De
ns

ity

We can also plot the empirical CDF of a set of data using the ecdf() command from the stepfun package,
which is included in the default distribution. We could then plot the estimated CDF using plot().

> library(stepfun)
> d <- ecdf(y)
> plot(d,main="Empirical CDF of Y")

7.2 Contour Plots
The command contour() from the graphics package takes a grid of function values and optionally two vectors
indicating the x and y values of the grid and draws the contour lines. Contour lines can be added to another
plot using the contourLines() function in a similar manner. The lattice package provides a functions called

40

levelplot() and contourplot() that are more flexible but less simple to use in my experience. A contour
example appears in appendix 14.5.

7.3 Adding a Legend
After plotting we often wish to add annotations or other graphics that should really be placed manually.
Functions like text() (see below) and legend() take as their first two arguments coordinates on the graph
where the resulting objects should be placed. In order to manually determine the location of a point on the
graph, use the locator() function. The location of one or several right clicks on the graph will be returned
by this function after a left click. Those coordinates can then be used to place text, legends, or other add-ons
to the graph.

An example of a time series, with a predicted curve and standard error lines around it

> plot(a.true,type="l",lty=1,ylim=c(11.6,12.5),main="Predicted vs True",xlab="",ylab="")
> lines(a.predict$pred,lty=2,type="l")
> lines(a.predict$pred+a.predict$se,lty=3,type="l")
> lines(a.predict$pred-a.predict$se,lty=3,type="l")
> legend(145,11.95,c("true values","predicted"),lty=c(1,2))

Predicted vs True

146 148 150 152 154 156

11
.6

12
.0

12
.4

true values
predicted

To avoid the hassle of finding the right location in graph coordinate space we can use more descriptive
words about where we want it, like x=’topleft’. That would put the legend right in the topleft (with no
space between it and the plot border). To make it more visually appealing we can bring it in a little by
specifying something like inset=.02.

7.4 Adding Arrows, Text, and Markers
After drawing a plot of some type, we can add arrows using the arrows() function from the graphics package.
It takes “from” and “to” coordinates. Text and markers can be added anywhere on the plot using the text()
and points() functions. For points() the type of marker is determined by the pch parameter. There are
many values this can take on, including letters. A quick chart of possible values is the last output of running
the command

> example(points)

An example plot using some of these features is in appendix 14.5.

41

http:inset=.02

7.5 Changing the Tick Marks
When you do a plot, by default R chooses tick marks and labels that it thinks are reasonable. In my view
they generally are, although sometimes they are more spaced out than I think they should be. The easiest
way to customize the tick marks is to do tell R not to put tick marks on with the plot command by passing
xaxt=’n’ (or yaxt=’n’ if it is the y axis we wish to replace) and then afterwards calling the axis() command.
For example, with 15 years of monthly data, R is likely not to put a tick mark by each year, so we use the
axis() command

> ticktimes <- seq(from=as.Date(’1995-01-01’),to=as.Date(’2011-01-01’),by=’year’)
> plot(dates,y,xaxt=’n’)
> axis(side=1,at=ticktimes,labels=format(ticktimes,’%Y’))

7.6 Multiple Plots
7.6.1 Simple Grids

We can partition the drawing canvas to hold several plots. There are several functions that can be used to
do this, including split.screen(), layout(), and par(). The simplest and most important is probably
par(), so we will examine only it for now. The par() function sets many types of defaults about the plots,
including margins, tick marks, and layout. We arrange several plots on one canvas by modifying the mfrow
attribute. It is a vector whose first entry specifies the number of rows of figures we will be plotting and the
second, the number of columns. Sometimes when plotting several figures, the default spacing may not be
pleasing to the eye. In this case we can modify the default margin (for each plot) using the mar attribute.
This is a four entry vector specifying the default margins in the form (bottom, left, top, right). The default
setting is c(5, 4, 4, 2) + 0.1. For a top/bottom plot, we may be inclined to decrease the top and bottom
margins somewhat. In order to plot a time series with a seasonally adjusted version of it below, we could
use

> op <- par(no.readonly=TRUE)
> par(mfrow=c(2,1),mar=c(3,4,2,2)+.1)
> plot(d[,1],main="Seasonally Adjusted",ylab=NULL)
> plot(d[,2],main="Unadjusted", ylab=NULL)
> par(op)

Notice that we saved the current settings in op before plotting so that we could restore them after our
plotting and that we must set the no.readonly attribute while doing this.

7.6.2 More Advanced Layouts

The layout() command treats the plotting area as a grid and each plot may span multiple columns or rows.
The columns and rows also may optionally be different widths. To use it, first set up a matrix where each
entry represents a location in the plotting grid and the number in the entry represents the plot that will be
in that location. For example, to have a plot that spans horizonally and then two smaller plots side by side
below it we could use

> layout(mat=rbind(c(1,1),c(2,3)))

and then execute each plot statement just as we did above

> data1 <- exp(rnorm(1000,sd=.01))
> data2 <- exp(rnorm(1000,sd=.02))
> range <- c(min(cumprod(data1),cumprod(data2)),max(cumprod(data1),cumprod(data2)))
> plot(cumprod(data1),type="l",main="A Couple of Series",ylab="",ylim=range)
> lines(cumprod(data2),col="red")
> plot(density(data1),main="Density of First",xlab="")
> plot(density(data2),main="Density of Second",xlab="",col="red")

42

http:exp(rnorm(1000,sd=.02
http:exp(rnorm(1000,sd=.01

Yielding the graph

0 200 400 600 800 1000

1.
0

1.
4

1.
8

A Couple of Series

Index

0.98 1.00 1.02 1.04

0
10

20
30

40

Density of First

D
en

si
ty

0.95 1.00 1.05

0
5

10
15

20

Density of Second

D
en

si
ty

In addition to controlling the width and height of plots by indicating which elements of the grid each plot
contains, we can explicitly define the width and height of each column and row by passing the width and
height parameters to layout().

7.6.3 Overplotting: Multiple Different Plots on the Same Graph

It is simple to add two sets of data to the same plot using plot() and then, for example, lines(). In
that case the X and Y axes of the plot are determined by the first plot() command and then subsequent
additions are added on the same scale. Occasionally, though, we want to plot two data series with the same
X values, but completely different Y scales. We may want to put tick marks for one Y scale on the right
axis and tick marks for the other on the left axis. To do this, we do one complete plot and then do a second
plot in the same space but with different Y limits. The par() command with key new allows us to do this.
First we generate some example data:

> data1<-data.frame(date=seq(from=as.Date("1980-01-01"),
+ length.out=200,by="month"),Y1=cumprod(exp(rnorm(200)/100)))
> data2<-data.frame(date=seq(from=as.Date("1975-01-01"),
+ length.out=205,by="month"),Y2=100*cumprod(exp(rnorm(205)/100)))

Now we plot it

> mindate<-min(c(data1$date,data2$date))
> maxdate<-max(c(data1$date,data2$date))
> par(mar=c(5,4,4,4)+.1)
> par(las=1)
> plot(data1$date,data1$Y1,type="l",ylab="First Scale",xlab="Date",
+ xlim=c(mindate,maxdate),col="black",main="Two Plots")
> par(new=TRUE)
> plot(data2$date,data2$Y2,type="l",axes=F,ylab="",xlab="",main="",
+ xlim=c(mindate,maxdate),col="red")
> axis(side=4,col.axis="red",col="red")
> mtext("Second Scale",4,line=3,col="red")

Notice that we determined the maximum and minimum X values at the beginning so we could use it on
both plots. Usually we are plotting one on top of the other, we want the X values to line up. If both dataset

43

have exactly the same range of X this will probably work without manually setting up X limits, but if the
dates differ, we need to set the X range ourselves. The first par() command modifies the margins so the
right margin gets the same amount of space as the left. The second ensures that all tick labels are horizontal
(otherwise the right axis labels read from bottom to top). The third par() command specifies that we will
be writing the next plot, with a different scale, on top of the first. I disabled drawing of the axis and labels in
the second plot so they did not draw on top of the first plot’s labels. Then we manually add the right hand
axis11 . mtext() writes the right Y axis label on the right side. The line parameter specifies the placement
(in number of text lines away from the axis line).

I have often wanted to rotate the right margin text 180 degrees so that it reads from top to bottom,
but mtext(), unfortunately, does not support this. We can get around this limitation by using the text()
command instead, with keywords xpd=TRUE and srt=-90. The former allows placement outside of the plot
area and the latter rotates the text so it reads from top to bottom. In this case we must determine the
correct plotting location ourselves. We can use the par() command to get the location of the axis. For
example

> dims<-par("usr")
> text(dims[2]+(dims[2]-dims[1])*.1,(dims[3]+dims[4])/2,srt=-90,
+ labels="second scale",xpd=TRUE,col="red")

Here we computed a location that would be in the middle of the plot in the vertical direction and 10% to
the right of the edge. The second ratio may need to change if the font size changes via the cex option in
par(), which I often use when saving a plot to a file. It’s a bit of manual work, but we can get the desired
objective: a right hand legend that reads from top to bottom, located right where we want it.

1975 1980 1985 1990 1995

1.00

1.05

1.10

1.15

Two Plots

Date

F
irs

t S
ca

le

90

95

100

105

110

115

S
econd S

cale

Using this method we can put any type of plot on top of any other type of plot and tweak the placement
and appearance of every detail of the resulting composite plot. This is an example of the flexibility and
power of R’s plotting capability, but also an example of how R makes you read the help pages and do a little
more work by hand than some other environments.

11Notice that in R each axis is numbered: 1 is bottom, 2 is left, 3 is top, 4 is right. This convention is used in many different
plotting functions.

44

7.7 Saving Plots—png, jpg, eps, pdf, xfig
In order to save plots to files we change the graphics device via the png(), jpg(), or postscript() com
mands, then we plot what we want and close the special graphics device using dev.off(). For example,

> png("myplot.png")
> plot(x,y,main="A Graph Worth Saving")
> dev.off()

creates a png file of the plot of x and y. In the case of the postscript file, if we intend to include the graphics
in another file (like in a LATEX document), we could modify the default postscript settings controlling the
paper size and orientation. Notice that when the special paper size is used (and for best results at other
times as well), the width and height must be specified. Actually with LATEX we often resize the image
explicitly, so the resizing may not be that important.

> postscript("myplot.eps",paper="special",width=4,height=4,horizontal=FALSE)
> plot(x,y,main="A Graph Worth Including in LaTeX")
> dev.off()

One more thing to notice is that the default paper size is a4, which is the European standard. For 8.5x11
paper, we use paper="letter". When using images that have been generated as a postscript, then converted
to pdf, incorrect paper specifications are a common problem.

There is also a pdf() command that works the same way the postscript command does, except that
by default its paper size is special with a height and width of 6 inches. A common example with pdf(),
which includes a little room for margins, would be

> pdf("myplot.pdf",paper="letter",width=8,height=10.5)
> par(mfrow=c(2,1))
> plot(x,y,main="First Graph (on top)")
> plot(x,z,main="Second Graph (on bottom)")
> dev.off()

Notice also that the par() command is used after the device command, pdf(). Another thing to notice is
that when outputting to pdf, the default behavior is to generate a square graph and center it on the page.
With letterpaper the usual default size is 7 inches square. The width and height parmeters override that
behavior, which is why we include them even though the dimensions of “letter” paper are already known.

Finally, many scientific diagrams are written using the free software xfig. R has the capability to export
to xfig format, which allows us complete flexibility in adding to and altering our plots. If we want to use R
to make a generic plot (like indifference curves), we remove the axis numbers and other extraneous marks
from the figure.

> xfig("myoutput.fig", horizontal=F)
> plot(x,(x-.3)^2,type="l",xlab="",ylab="",xaxt="n",yaxt="n")
> dev.off()

The xaxt and yaxt parameters remove the numbers and tic marks from the axes.

7.8 Fixing Font and Symbol Size in Pdfs
When R draws a plot to the screen the fonts, symbols, and other plot characteristics are typically nicely
sized. Yet occasionally when drawing to a device that has a different resolution than the screen, such as a
pdf file, the sizes are not so nice. In my experience, drawing a full page pdf corresponding to a graph that
looks nice when drawn to the screen will result in very large fonts and symbols. The general size of these
marks is scaled by the cex parameter, using the par() command. The commands

pdf("myplot.pdf",paper="letter")
par(cex=.75)
plot(x,y,main="Sample Plot")
dev.off()

45

http:par(cex=.75

are more likely to give pleasing results in my experience. The smaller the cex parameter the smaller the
fonts and symbols in the resulting graph. Again, remember that parameters set by par() should be set
after the device (pdf in this case) is initialized. Otherwise they apply to whatever device was being drawn
to before that.

7.9 Adding Greek Letters and Math Symbols to Plots
R can typeset a number of mathematical expressions for use in plots using the substitute() command. I
illustrate with an example (which, by the way, is completely devoid of economic meaning, so don’t try to
understand the function).

> plot(x,y,main=substitute(y==Psi*z-sum(beta^gamma)),type="l")
> text(3,40,substitute(Delta[K]==1))
> text(0.6,20,substitute(Delta[K]==epsilon))

0 1 2 3 4 5

−
20

0
20

40
60

80
10

0
12

0

y = Ψz − ∑βγ

x

y

∆K = 1

∆K = ε

Capitalizing the first letter of the Greek symbol results in the “capital” version of the symbol. Notice
that to get the equal sign in the expression, one must use the double equal sign, as above. Brackets indicate
subscripts. We can optionally pass variables to substitute() to include their value in the formula. For
example

> for (g in seq(.1,1,.1)){
+ plot(f(g),main=substitute(gamma==x,list(x=g)))
> }

will make ten plots, in each plot the title will reflect the value of γ that was passed to f(). The rules for
generating mathematical expressions are available through the help for plotmath, which is the mathematical
typesetting engine used in R plots.

To mix text and symbols, use the paste() command inside of substitute()

plot(density(tstats),main=substitute(paste("t-stat of ",beta[0])))

7.10 Changing the Font in Plots
The default font used for the title, labels, and any other words on a plot is a fairly plain sans-serif font. I
like to use a font that looks a little more like my body text. You can change the font family by passing the
keyword family=”serif” or family=”mono”. Alternately, the font family can be specified using the command
par(family=”serif”). Similarly, they keyword font to either the plot() or par() functions changes the face
from normal to bold or italics.

46

A more flexible font family is the Hershey family. Hershey fonts are built into R as a system of vectors
that R can draw easily in any size or rotation. This font also has a lot of special characters (such as math
and greek symbols) built in. Run

> demo(Hershey)

to see some examples.
R can also load up arbitrary fonts, such as TrueType fonts, but the procedure is a little more involved.

One has to create the font within R. I use this functionality only for using the Computer Modern font, which
is the default font in the LATEXdocuments I write (like the one you are reading right now). One thing to be
aware of is that some fonts work only with certain devices. Computer Modern, for example, works with the
pdf and postscript drivers only—not to the screen. I obtained the five necessary font files online12, copied
them into my R directory, and executed

> CM <- Type1Font("CM", c("./fcmr8a.afm", "./fcmb8a.afm",
+ "./fcmri8a.afm", "./fcmbi8a.afm", "./cmsyase.afm"))
> pdf("testpdf.pdf", family=CM)
> plot(1:200,cumprod(1+rnorm(200,sd=.001)),main="Computer Modern Font",
+ xlab="The X Axis",ylab="The Y Axis",type=’l’)
> dev.off()
> embedFonts("testpdf.pdf",out="fixedpdf.pdf")

Notice that I needed to use embedFonts() because R does not embed fonts in the pdf. Not a problem if it’s
one of the standard 14 fonts that all pdf viewers should support, but Computer Modern is not one of those.

0 50 100 150 200

0.
99

2
0.

99
4

0.
99

6
0.

99
8

1.
00

0
1.

00
2

1.
00

4

Computer M odern Font

The X Axis

T
he

 Y
 A

xi
s

It is a little unusual to use Computer Modern in a big bold font as you see in this title of this plot, but the
axis labels should match a normal Computer Modern text.

7.11 Other Graphics Packages
So far I have discussed the R base plotting package. It is very sophisticated and useful when compared with
the plotting capabilities of many other statistical software packages. It is not all inclusive, however, and
there are other graphics packages in R which might prove useful, including grid, lattice, and ggplot2.

12I learned how to do this at

47

https://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

https://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

8 Statistics
R has extensive statistical functionality. The functions mean(), sd(), min(), max(), and var() operate on
data as we would expect13 . If our data is a matrix and we would like to find the mean or sum of each row
or column, the fastest and best way is to use one of rowMeans(), colMeans(), rowSums(), colSums().

8.1 Working with Common Statistical Distributions
R can also generate and analyze realizations of random variables from the standard distributions. Commands
that generate random realizations begin with the letter ‘r’ and take as their first argument the number of
observations to generate; commands that return the value of the pdf at a particular observation begin with
‘d’; commands that return the cdf value of a particular observation begin with ‘p’; commands that return
the number corresponding to a cdf value begin with q. Note that the ‘p’ and ‘q’ functions are inverses of
each other.

> rnorm(1,mean=2,sd=3)
[1] 2.418665
> pnorm(2.418665,mean=2,sd=3)
[1] 0.5554942
> dnorm(2.418665,mean=2,sd=3)
[1] 0.1316921
> qnorm(.5554942,mean=2,sd=3)
[1] 2.418665

These functions generate a random number from the N(2,9) distribution, calculate its cdf and pdf value,
and then verify that the cdf value corresponds to the original observation. If we had not specified the mean
and standard deviation, R would have assumed standard normal.

Command Meaning
rX() Generate random vector from distribution X
dX() Return the value of the PDF of distribution X
pX() Return the value of the CDF of distribution X
qX() Return the number at which the CDF hits input value [0,1]

Note that we could replace norm with one of the following standard distribution names

Distribution R Name Possible Arguments
beta beta shape1, shape2, ncp
binomial binom size, prob
Cauchy cauchy location, scale
chi-squared chisq df, ncp
exponential exp rate
F f df1, df1, ncp
gamma gamma shape, scale
geometric geom prob
hypergeometric hyper m, n, k
log-normal lnorm meanlog, sdlog
logistic logis location, scale
negative binomial nbinom size, prob
normal norm mean, sd
Poisson pois lambda
Students t t df, ncp
uniform unif min, max
Weibull weibull shape, scale
Wilcoxon wilcox m, n

13Note: the functions pmax() and pmin() function like max and min but elementwise on vectors or matrices.

48

The mvtnorm package provides the multivariate normal and t distributions with names mvnorm and
mvt, respectively. Other distributions are found in other packages. For example, invgamma is available in
MCMCpack.

8.2 P-Values
By way of example, in order to calculate the p-value of 3.6 using an f(4, 43) distribution, we would use the
command

> 1-pf(3.6,4,43)
[1] 0.01284459

and find that we fail to reject at the 1% level, but we would be able to reject at the 5% level. Remember,
if the p-value is smaller than the alpha value, we are able to reject. Also recall that the p-value should be
multiplied by two if it we are doing a two tailed test. For example, the one and two tailed tests of a t statistic
of 2.8 with 21 degrees of freedom would be, respectively

> 1-pt(2.8,21)
[1] 0.005364828
> 2*(1-pt(2.8,21))
[1] 0.01072966

So that we would reject the null hypothesis of insignificance at the 10% level if it were a one tailed test
(remember, small p-value, more evidence in favor of rejection), but we would fail to reject in the sign-
agnostic case.

8.3 Sampling from Data
R provides a convenient and fast interface for sampling from data (e.g., for bootstrapping). Because it calls a
compiled function, it is likely to be much faster than a hand-written sampler. The function is sample(). The
first argument is either the data from which to sample or an integer—if an integer is given, then the sample
is taken from the vector of integers between one and that number. The second is the size of the sample to
obtain. The parameter replace indicates whether to sample with or without replacement. Finally, a vector
of sample probabilities can optionally be passed.

9 Math in R

9.1 Matrix Operations
9.1.1 Matrix Algebra and Inversion

Most R commands work with multiple types of data. Most standard mathematical functions and operators
(including multiplication, division, and powers) operate on each component of multidimensional objects.
Thus the operation A*B, where A and B are matrices, multiplies corresponding components. In order to
do matrix multiplication or inner products, use the %*% operator. Notice that in the case of matrix-vector
multiplication, R will automatically make the vector a row or column vector, whichever is conformable.
Matrix inversion is obtained via the solve() function. (Note: if solve() is passed a matrix and a vector,
it solves the corresponding linear problem) The t() function transposes its argument. Thus

β = (X ' X)−1X ' Y (12)

would correspond to the command

> beta <- solve(t(X)%*%X)%*%t(X)%*%Y

or more efficiently

> beta <- solve(t(X)%*%X,t(X)%*%Y)

49

The Kronecker product is also supported and is specified by the the %x% operator.

> bigG <- g%x%h

calculates the Kronecker product of g with h. The outer product, %o% is also supported. When applied to
pure vectors (which we recall have only one dimension and thus are neither rows or columns), both matrix
products makes different assumptions about whether the arguments are row or column vectors, depending
on their position. For example

> h<-c(1,2,3)
> h%*%h

[,1]
[1,] 14
> h%o%h

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
> t(h)%*%h

[,1]
[1,] 14
> h%*%t(h)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9

Note that t(h)%o%h would produce a 1x3x3 array since the t() operator makes h into a row vector and
%o% makes the second h into a row vector. Strictly speaking those arguments are not conformable. That
combination should probably be avoided.

The trace of a square matrix is calculated by the function tr() and its determinant by det(). The Matrix
package provides the various matrix norms (norm()), sparse and symmetric matrix support, and other linear
algebra-ish functionality. It should be remembered that the Matrix package provides its own class Matrix,
which is distinct from the standard R type matrix. In order to use functions from the Matrix package, they
must be converted using Matrix().

9.1.2 Factorizations

R can compute the standard matrix factorizations. The Cholesky factorization of a symmetric positive
definite matrix is available via chol(). It should be noted that chol() does not check for symmetry in its
argument, so the user must be careful.

We can also extract the eigenvalue decomposition of a symmetric matrix using eigen(). By default this
routine checks the input matrix for symmetry, but it is probably better to specify whether the matrix is
symmetric by construction or not using the parameter symmetric.

> J <- cbind(c(20,3),c(3,18))
> j <- eigen(J,symmetric=T)
> j$vec%*%diag(j$val)%*%t(j$vec)

[,1] [,2]
[1,] 20 3
[2,] 3 18

If the more general singular value decomposition is desired, we use instead svd(). For the QR factoriza
tion, we use qr(). The Matrix package provides the lu() and Schur() decompositions—just remember to
convert the matrix to type Matrix (not matrix) before using them.

50

9.2 Numerical Optimization
9.2.1 General Unconstrained Minimization

R can numerically minimize an arbitrary function using either nlm() or optim(). I prefer the latter because
it lets the user choose which optimization method to use (BFGS, conjugate gradients, simulated annealing,
and others), but they work in similar ways. For simplicity I describe nlm().

The nlm() function takes as an argument a function and a starting vector at which to evaluate the
function. The fist argument of the user-defined function should be the parameter(s) over which R will
minimize the function, additional arguments to the function (constants) should be specified by name in the
nlm() call.

> g <- function(x,A,B){
+ out <- sin(x[1])-sin(x[2]-A)+x[3]^2+B
+ out
+ }
> results <- nlm(g,c(1,2,3),A=4,B=2)
> results$min
[1] 6.497025e-13
> results$est
[1] -1.570797e+00 -7.123895e-01 -4.990333e-07

Here nlm() uses a matrix-secant method that numerically approximates the gradient, but if the return value
of the function contains an attribute called gradient, it will use a quasi-newton method. The gradient based
optimization corresponding to the above would be

> g <- function(x,A,B){
+ out <- sin(x[1])-sin(x[2]-A)+x[3]^2+B
+ grad <- function(x,A){
+ c(cos(x[1]),-cos(x[2]-A),2*x[3])
+ }
+ attr(out,"gradient") <- grad(x,A)
+ return(out)
+ }
> results <- nlm(g,c(1,2,3),A=4,B=2)

If function maximization is wanted one should multiply the function by -1 and minimize. If optim() is
used, one can instead pass the parameter control=list(fnscale=-1), which indicates a multiplier for the
objective function and gradient. It can also be used to scale up functions that are nearly flat so as to avoid
numerical inaccuracies.

Other optimization functions which may be of interest are optimize() for one-dimensional minimization,
uniroot() for root finding, and deriv() for calculating numerical derivatives.

9.2.2 General Minimization with Linear Constraints

Function minimization subject to a set of linear inequality constraints is provided by constrOptim(). The
set of constraints must be expressible in the form

' Ui θ − Ci ≥ 0

where Ui and Ci are known constant vectors and θ is the vector of parameters over which we are optimizing.
Notice that Ui and Ci have a number of rows equal to the number of constraints you will use and Ui has a
number of columns equal to the number of parameters to be estimated. Equality constraints should be built
into the objective function.

A simple example: T o solve
θ̂ = argmaxθwmi≤1f(θ)

we would use

51

> thetahat<-constrOptim(c(0,0,0,0,0),-f,NULL,ui=-m,ci=-1)$par

The first argument is the starting value (θ has five parameters), the function is multiplied by −1 since we
are maximizing. The next argument should be a function giving the gradient of f . If we do not have such
a function, we must insert NULL so that a non-gradient method optimization method is used. Notice that
in this example m is a 5-vector. Actually ui and ci should be appropriately sized data members of type
matrix.

9.3 Quadratic Programming
A large number of constrained optimization problems that we might seek to solve can be written as the
minimization of a quadratic function of several variables subject to linear (equality or inequality) constraints.
If the optimization problem can be written this way, it is much more efficient and reliable to use an optimizer
that specializes in this class of problems. These ‘quadratic programming’ optimizers are available in the
quadprog package.

The package assumes that the problem can be written

1
min −dT b + bT Db

2

subject to
AT b >= b0.

The choice variable (the vector of parameters the optimizer will find) here is b. When we set up the problem,
we should specify equality constraints at the top of the AT matrix and inequalities after. The parameter
meq specifies how many of the constraints are equalities.

As an example, we solve a portfolio optimization problem. If SIGMA is a covariance matrix of available
assets and ER is the vector of expected returns, we can solve for the optimal portfolio weights for a portfolio
with expected return .04 using the following code

> w <- solve.QP(Dmat=SIGMA, dvec=rep(0,NROW(SIGMA)), Amat=cbind(ER,1),
bvec=c(.04,1), meq=2)$solution

Notice that we set d to be a vector of zeros because we are just minimizing the variance. The A matrix has
the expected returns as the first column and a vector of ones as the second. Notice that the A matrix is
transposed in the description of the problem. For b0 the first entry is our expected return constraint and the
second is the constraint that the sum of the weights is unity.

A second example disallows short sales. Here we set up a constraint for each variable requiring positivity.

> eye <- diag(1,NROW(SIGMA))
> w2 <- solve.QP(Dmat=SIGMA, dvec=rep(0,NROW(SIGMA)), Amat=cbind(ER,1,eye),

bvec=c(.04,1,rep(0,NROW(SIGMA))), meq=2)$solution

Notice that meq is still 2 since the positivity constraints are all inequalities, whereas the first two constraints
are equalities.

Notice that we have actually minimized half the variance here. This gives the correct solution for the
portfolio weights. However, the output from the optimizer includes a variable called value, which in this
case is only half the variance.

9.4 Root Finding
I have often had opportunity to need to find the root of a nonlinear function of one or more variables. One
method for accomplishing this is to minimize the function squared (or the norm of the function, in the
multivariable case), but it is more efficient to search for a zero (known value) than a minimum (unknown
value). For this purpose, R provides uniroot in the univariate case. We pass the function and a set of
starting values and it returns the parameters at which the root occurs. For the vector-valued function case,
the package rootSolve provide multiroot, which works the same way.

52

9.5 Numerical Integration
We can use the function integrate() from the stats package to do unidimensional integration of a known
function. For example, if we wanted to find the constant of integration for a posterior density function we
could define the function and then integrate it

> postdensity <- function(x){
+ exp(-1/2*((.12-x)^2+(.07-x)^2+(.08-x)^2))
+ }
> const <- 1/integrate(postdensity,-Inf,Inf)$value

We notice that integrate() returns additional information, such as error bounds, so we extract the value
using $value. Also, in addition to a function name, integrate() takes limits of integration, which—as in
this case—may be infinite. For multidimensional integration we instead use adapt() from the adapt package,
which does not allow infinite bounds.

10 Programming

10.1 Writing Functions
A function can be treated as any other object in R. It is created with the assignment operator and
function(), which is passed an argument list (use the equal sign to denote default arguments; all other
arguments will be required at runtime). The code that will operate on the arguments follows, surrounded
by curly brackets if it comprises more than one line.

If an expression or variable is evaluated within a function, it will not echo to the screen. However, if it
is the last evaluation within the function, it will act as the return value. This means the following functions
are equivalent

> g <- function(x,Alpha=1,B=0) sin(x[1])-sin(x[2]-Alpha)+x[3]^2+B
> f <- function(x,Alpha=1,B=0){
+ out <- sin(x[1])-sin(x[2]-Alpha)+x[3]^2+B
+ return(out)
+ }

Notice that R changes the prompt to a “+” sign to remind us that we are inside brackets.
Because R does not distinguish what kind of data object a variable in the parameter list is, we should

be careful how we write our functions. If x is a vector, the above functions would return a vector of the
same dimension. Also, notice that if an argument has a long name, it can be abbreviated as long as the
abbreviation is unique. Thus the following two statements are equivalent

> f(c(2,4,1),Al=3)
> f(c(2,4,1),Alpha=3)

Function parameters are passed by value, so changing them inside the function does not change them
outside of the function. Also variables defined within functions are unavailable outside of the function. If a
variable is referenced inside of a function, first the function scope is checked for that variable, then the scope
above it, etc. In other words, variables outside of the function are available to code inside for reading, but
changes made to a variable defined outside a function are lost when the function terminates. For example,

> a<-c(1,2)
> k<-function(){
+ cat("Before: ",a,"\n")
+ a<-c(a,3)
+ cat("After: ",a,"\n")
+ }
> k()
Before: 1 2

53

After: 1 2 3
> a
[1] 1 2

If a function wishes to write to a variable defined in the scope above it, it can use the “superassignment”
operator <<-. The programmer should think twice about his or her program structure before using this
operator. Its need can easily be the result of bad programming practices. Section 10.12 has ideas on how to
deal with situations where you might be tempted to use it.

10.2 Looping
Looping is performed using the for command. It’s syntax is as follows

> for (i in 1:20){
+ cat(i)
> }

Where cat() may be replaced with the block of code we wish to repeat. Instead of 1:20, a vector or matrix
of values can be used. The index variable will take on each value in the vector or matrix and run the code
contained in curly brackets.

If we simply want a loop to run until something happens to stop it, we could use the repeat loop and a
break

> repeat {
+ g <- rnorm(1)
+ if (g > 2.0) break
+ cat(g);cat("\n")
> }

Notice the second cat command issues a newline character, so the output is not squashed onto one line. The
semicolon acts to let R know where the end of our command is, when we put several commands on a line.
For example, the above is equivalent to

> repeat {g <- rnorm(1);if (g>2.0) break;cat(g);cat("\n");}

In addition to the break keyword, R provides the next keyword for dealing with loops. This termi
nates the current iteration of the for or repeat loop and proceeds to the beginning of the next iteration
(programmers experienced in other languages sometimes expect this keyword to be continue but it is not).

10.3 Avoiding Loops
10.3.1 Using Vector Math (Implicit Loops)

R is a vector-oriented language and it is therefore much faster to use the implicit loop of vectors than to
write an explicit loop. For example if A, B, and C are large vectors, the following is fast and clear

> Z <- A*B/sqrt(C)

while the explicit version

> Z <- numeric(length(A)
> for (i in 1:length(A)){
> Z[i] <- A[i]*B[i]/sqrt(C[i])
> }

is much slower, longer, and less clear. One of the skills an experienced R programmer must learn is to write
functions that use the implicit loop as much as possible. When the datasets get large this speedup effect is
very pronounced.

54

10.3.2 Applying a Function to an Array, List, or Vector

To help the programmer avoid unsightly or unclear loops14, R has a command to call a function with each
of the rows or columns of an array. We specify one of the dimensions in the array, and for each element in
that dimension, the resulting cross section is passed to the function.

For example, if X is a 50x10 array representing 10 quantities associated with 50 individuals and we want
to find the mean of each row (or column), we could write

> apply(X,1,mean) # for a 50-vector of individual (row) means
> apply(X,2,mean) # for a 10-vector of observation (column) means

Of course, an array may be more than two dimensional, so the second argument (the dimension over which
to apply the function) may go above 2. A better way to do this particular example, of course, would be to
use rowMeans() or colMeans().

We can use apply() to apply a function to every element of an array individually by specifying more
than one dimension. In the above example, we could return a 50x10 matrix of normal quantiles using

> apply(X,c(1,2),qnorm,mean=3,sd=4)

After the required three arguments, any additional arguments are passed to the inside function, qnorm in
this case.

In order to execute a function on each member of a list, vector, or other R object, we can use the
function lapply(). The result will be a new list, each of whose elements is the result of executing the
supplied function on each element of the input. The syntax is the same as apply() except the dimension
attribute is not needed. To get the results of these function evaluations as a vector instead of a list, we can
use sapply(). There are several other apply-like functions in R that the interested programmer can learn
to use.

Function Input Output
apply() matrix vector
lapply() list or vector list
sapply() list or vector vector
vapply() list or vector vector
mapply() multiple equal-sized objects vector
tapply() subsets of a vector vector
by() subsets of a dataframe vector

Note: In most cirumstances calling code from one of these apply-like functions doesn’t generally save
much time over explicit looping. These functions faster than loops but not by an order of magnitude. They
should be called for parsimony or clarity. By a small margin, the fastest of these functions is lapply()—
the others typically call it and then simplify the results. It’s also the most general. Actually technically
vapply() is even faster on equivalent problems because you specify the return type, which speeds things up.
Apply-like functions differ from loops primarily in that one iteration cannot affect the others (wheras loops
allow things like counters and cumulations).

A very, very good reason to use these functions is that if you call the time-consuming bits of your
code with these functions, you can easily replace them with the equivalent parallel-processing versions (e.g.,
mclapply() or parLapply()) and save some real time on a multiprocessor machine. Section 10.11 has
more details. The limitations of these functions correspond very nicely to those imposed by simple parallel
processing problems, so they are a natural candidate for simple parallelization.

10.3.3 Applying a Function to By-Groups

Programmers coming from the SAS or SQL world will find themselves looking for a convenient way to apply
a function to all the observations, by group, as is often done when working with data in long format (see
section 3.5). A very simple example would be applying the prod() function to a set of daily returns to get

14but not necessarily the performance penalty loops impose. Read on.

55

the monthly returns. Suppose we have a dataset tracker with columns date and r where date is the date
of the observation and r is the daily return for that date (gross returns, meaning 1+return). We would like
to generate a dataset of monthly returns without using a cumbersome loop structure. In this case it is very
simple

> dmonthly<-aggregate(tracker$r,by=list(ym=format(tracker$date,’%Y%m’)),FUN=prod)

Notice that the arguments are the data to which we will apply the function, the grouping list (it must be
specified as a list, and may contain more than one level of by group), and the function we wish to apply.
For this example I chose to create a new variable ym, which is a string that serves to index each month. If
we have a variable already created for this purpose, it may be clearer to the reader.

The output will be a dataset containing two columns: ym, our monthly index, and x, which contains the
corresponding monthly return.

This construction may seem like a very specific or uncommon case to the inexperienced programmer, but
to anyone coming from the record-oriented programming world (which much of finance is, for example) it
comes up rather frequently.

Notice that aggregate() produces a vector equal in length to the number of by-groups there are. In
some cases, however, we want the result to have the the same number of observations as the original vector.
For example, if we want to find the rank of one variable when grouped by another. For these cases I use
ave(). To rank returns (r)to various funds by month (ym) we could use

> FundReturns$MonthRank <- ave(FundReturns$r,FundReturns$ym,FUN=rank)

10.3.4 Replicating

If the programmer wishes to run a loop to generate values (as in a simulation) that do not depend on the
index, the function replicate() provides a convenient and fast interface. To generate a vector of 50000
draws from a user defined function called GetEstimate() which could, for example, generate simulated data
and return a corresponding parameter estimate, the programmer could execute

> estimates<-replicate(50000,GetEstimate(alpha=1.5,beta=1))

If GetEstimate() returns a scalar, replicate() generates a vector. It it returns a vector, replicate()
will column bind them into a matrix. Notice that replicate() always calls its argument function with the
same parameters—in this case 1.5 and 1.

10.4 Conditionals
10.4.1 Binary Operators

Conditionals, like the rest of R, are highly vectorized. The comparison

> x < 3

returns a vector of TRUE/FALSE values, if x is a vector. This vector can then be used in computations.
For example. We could set all x values that are less that 3 to zero with one command

> x[x<3] <- 0

The conditional within the brackets evaluates to a TRUE/FALSE vector. Wherever the value is TRUE, the
assignment is made. Of course, the same computation could be done using a for loop and the if command.

> for (i in 1:NROW(x)){
+ if (x[i] < 3) {
+ x[i] <- 0
+ }
+ }

56

Because R is highly vectorized, the latter code works much more slowly than the former. It is generally good
programming practice to avoid loops and if statements whenever possible when writing in any scripting
language15 .

The Boolean Operators
! x NOT x
x & y x and y elementwise
x && y x and y total object
x | y
x | | y
xor(x, y)

x or y elementwise
x or y total object
x xor y (true if one and only one argument is true)

any(x) TRUE if any element of x is true
all(x) TRUE if all elements of x are true

10.4.2 WARNING: Conditionals and NA

It should be noted that using a conditional operator with an NA or NaN value returns NA. This is often
what we want, but causes problems when we use conditionals within an if statement. For example

> x <- NA
> if (x == 45) cat("Hey There")
Error in if (x == 45) cat("Hey There") : missing value where TRUE/FALSE needed

For this reason we must be careful to include plenty of is.na() checks within our code.

10.5 The Ternary Operator
Since code segments of the form

> if (x) {
+ y } else {
+ z }

come up very often in programming, R includes a ternary operator that performs this in one line

> ifelse(x,y,z)

If x evaluates to TRUE, then y is returned. Otherwise z is returned. This turns out to be helpful because of
the vectorized nature of R programming. For example, x could be a vector of TRUE/FALSE values, whereas
the long form would have to be in a loop or use a roundabout coding method to achieve the same result.

10.6 Outputting Text
Character strings in R can be printed out using the cat() function. All arguments are coerced into strings
and then concatenated using a separator character. The default separator is a space.

> remaining <- 10
> cat("We have",remaining,"left\n")
We have 10 left
> cat("We have",remaining,"left\n",sep="")
We have10left

In order to print special characters such as tabs and newlines, R uses the C escape system. Characters
preceded by a backslash are interpreted as special characters. Examples are \n and \t for newline and tab,
respectively. In order to print a backslash, we use a double backslash \\. When outputting from within

15Although it is also possible to try too hard to remove loops, complicating beyond recognition and possibly even slowing the
code.

57

scripts (especially if there are bugs in the script) there may be a delay between the output command and
the printing. To force printing of everything in the buffer, use flush(stdout()).

To generate a string for saving (instead of displaying) we use the paste() command, which turns its
arguments into a string and returns it instead of printing immediately. Notice that if one of the arguments
to the paste() command is a vector of strings, then by default the result will be a vector of strings in which
each element of the output string is the whole argument to paste(), with one element of the input vector
inserted. To make a single string out of a vector of strings, use the collapse keyword instead of the sep
keyword when defining how you want paste to separate its inputs.

10.7 Pausing/Getting Input
Execution of a script can be halted pending input from a user via the readline() command. If readline()
is passed an argument, it is treated as a prompt. For example, a command to pause the script at some point
might read

> blah <- readline("Press <ENTER> to Continue.")

the function returns whatever the user inputted. It is good practice to assign the output of readline() to
something (even if it is just a throw-away variable) so as to avoid inadvertently printing the input to the
screen or returning it—recall that if a function does not explicitly call return() the last returned value
inside of it becomes its return value.

The function readline() always returns a string. If a numeric quantity is wanted, it should be converted
using as.numeric().

10.8 Timing Blocks of Code
If we want to know the compute time of a certain block of code, we can pass it as an argument to the
system.time() function. Suppose we have written a function called slowfunction() and we wish to know
how much processor time it consumes.

> mytime <- system.time(myoutput <- slowfunction(a,b))
> mytime

user system elapsed
0.152 0.016 1091.586

The output of slowfunction() is stored in myoutput and the elements of mytime are user, system and total
times (in seconds), followed by totals of user and system times of child processes spawned by the expression.

I often find it inconvenient to pass code to system.time(), so instead we can call proc.time(), which
tells how much time this R session has consumed, directly and subtract.

> mytime <- proc.time()
> myoutput <- slowfunction(a,b)
> (proc.time() - mytime)[3]
elapsed
1091.586

The proc.time() interface actually gives us information on five types of time, although the associated print()
routine only shows three. In general I find it most convenient to look at the third number produced by proc
time, which is the amount of actual time that has elapsed. The amount of CPU time used, for example, can
be deceptive if R sends queries to a database that takes a long time to run. If we wanted to know how much
computation time was actually used by R, we would look at the sum of the first and fourth entries (user
time plus user time of child processes).

10.9 Calling C functions from R
Some programming problems have elements that are just not made for an interpreted language because
they require too much computing power (especially if they require too many loops). These functions can be

58

written in C, compiled, and then called from within R16. R uses the system compiler (if you have one) to
create a shared library (ending in .so or .dll, depending on your system) which can then be loaded using
the dyn.load() function.

10.9.1 How to Write the C Code

A function that will be called from within R should have type void (it should not return anything except
through its arguments). Values are passed to and from R by reference, so all arguments are pointers. Real
numbers (or vectors) are passed as type double*, integers and boolean as type int*, and strings as type
char**. If inputs to the function are vectors, their length should be passed manually. Also note that objects
such as matrices and arrays are just vectors with associated dimension attributes. When passed to C, only
the vector is passed, so the dimensions should be passed manually and the matrix recreated in C if necessary.

Here is an example of a C file to compute the dot product of two vectors

void gdot(double *x,double *y,int *n,double *output){
int i;
*output=0;
for (i=0;i<*n;i++){

*output+=x[i]*y[i];
}

}

No header files need to be included unless more advanced functionality is required, such as passing complex
numbers (which are passed as a particular C structure). In that case, include the file R.h.

Do not use malloc() or free() in C code to be used with R. Instead use the R functions Calloc() and
Free(). R does its own memory management, and mixing it with the default C memory stuff is a bad idea.

Outputting from inside C code should be done using Rprintf(), warning(), or error(). These functions
have the same syntax as the regular C command printf(), which should not be used.

It should also be noted that long computations in compiled code cannot be interrupted by the user. In
order to check for an interrupt signal from the user, we include

#include <R_ext/Utils.h>
...
R_CheckUserInterrupt();

in appropriate places in the code.

10.9.2 How to Use the Compiled Functions

To compile the library, from the command line (not inside of R) use the command

R CMD SHLIB mycode.c

This will generate a shared library called mycode.so. To call a function from this library we load the library
using dyn.load() and then call the function using the .C() command. This command makes a copy of each
of its arguments and passes them all by reference to C, then returns them as a list. For example, to call the
dot product function above, we could use

> x<-c(1,4,6,2)
> y<-c(3,2.4,1,9)
> dyn.load("mycode.so")
> product<-.C("gdot",myx=as.double(x),myy=as.double(y),myn=as.integer(NROW(x)),myoutput=numeric(1))
> product$myoutput
[1] 36.6

16My experience has been that the speedup of coding in C is not enough to warrant the extra programming time except for
extremely demanding problems. If possible, I suggest working directly in R. It’s quite fast—as interpreted languages go. It is
somewhat harder to debug C code from within R and the C/R interface introduces a new set of possible bugs as well.

59

http:dyn.load("mycode.so
http:mycode.so

Notice that when .C() was called, names were given to the arguments only for convenience (so the resulting
list would have names too). The names are not passed to C. It is good practice (and often necessary) to use
as.double() or as.integer() around each parameter passed to .C(). If compiled code does not work or
works incorrectly, this should be checked first.

It is important to create any vectors from within R that will be passed to .C() before calling them. If
the data being passed to .C() is large and making a copy for passing is not desirable, we can instruct .C()
to edit the data in place by passing the parameter DUP=FALSE. The programmer should be very wary when
doing this, because any variable changed in the C code will be changed in R also and there are subtle caveats
associated with this. The help file for .C() or online documentation give more information.

There is also a .Fortran() function. Notice that .C() and .Fortran() are the simple ways to call
functions from these languages, they do not handle NA values or complicated R objects. A more flexible and
powerful way of calling compiled functions is .Call(), which handles many more types of R objects but adds
significantly to the complexity of the programming. The .Call() function is a relatively recent addition to
R, so most of the language was written using the simple but inflexible .C().

10.10 Calling R Functions from C
Compiled C code that is called from R can also call certain R functions (fortran can not). In particular,
the functions relating to drawing from and evaluating statistical distributions are available. To access
these functions, the header file Rmath.h must be included. Unfortunately these C functions are not well
documented, so the programmer may have to look up their definitions in Rmath.h on the local system. Before
calling these functions, GetRNGstate() must be called, and PutRNGstate() must be called afterward. Below
is a C function that generates an AR(1) series with N(0,1) errors and a supplied coefficient.

#include<Rmath.h>
void ar1(double *y,double *rho,double *N){
int i;
GetRNGstate();
for (i=1;i<N[0];i++){
y[i]=rho[0]*y[i-1]+rnorm(0.0,1.0);

}
PutRNGstate();

}

which could be called (as usual) from within R using

> dyn.load("ar1.so")
> X<-.C("ar1",x=double(len=5000),rho=as.double(.9),n=as.integer(5000))$x

Most common mathematical operations, such as sqrt() are also available through the C interface.
Actual R expressions can also be called from within C, but this is not recommended since it invokes a

new instance of R and is slower than terminating the C code, doing a computation in R, and calling another
C function. The method for doing it is the (now depreciated) call R() function.

10.11 Parallel Computing
As desktops and workstations become more capable, they have an increasing ability for parallel processing:
multiple processors, multiple cores, hyperthreading, and clustered computers. R is natively a single-threaded
language and so that during a long computation, one processor is likely to be near 100% utilized while the
others are idle. There are a number of packages that allow R to spread a computation across multiple
processors. Since the release of R 2.14.0, R comes with a new base package called parallel. This package
includes most of the functionality from the multicore, which provides simple functionality for parallelizing on
a single machine, and snow, which provides for parallelization on a cluster—possibly over multiple machines.

In my experience, the most useful kind of multiprocessing for interpreted languages (also the one most
available) is high-level parallelization for calling a single time-consuming function many times with different

60

http:dyn.load("ar1.so

arguments that do not depend on the output of the other function calls. This is an example of what computer
scientists call an “embarrassingly parallel” problem.

One of the easiest ways to implement parallelization is to write code in such a way that the parallelizable
part is in a function of its own and is called from within one of the apply() functions. Specifically, I use
lapply(), which takes a list as its argument and returns a list containing the results from function call
with no dependence between one function call and the next17 . When the code works, we can then replace
lapply() with mclapply(), specifying how many processors to use and we are done. The catch is that
mclapply() works only on POSIX-type computer (Linux, Unix, Mac), not windows. On windows it simply
calls lapply().

Besides mc.cores, which specifies how many processors to use at a time, there is one important mclapply()
option: mc.preschedule. By default this is false, which means one thread is created for each processor and
the work is split up between the threads before any computations are done. This works well if there are
many elements in the list and each takes about the same amount of time to run. The alternative is to set
mc.prescedule to true, which means each item in the list to be executed is placed in its own thread, one at
a time, and given to the next available processor. This is called load-balancing and works well if there are
relatively few elements of the list (creating these threads has significant overhead) and if the function calls
vary widely in how long they take to run. In other words, setting this to true avoids the situation where
all processors except one finish early and then you have to wait for the one to do a long job, but it incurs
greater overhead overall. Notice that functions called by mclapply() can see upper-level variables just as
functions called in a normal context can and are generally able to print to the screen as well. When using
other packages for parallelization this may not be the case.

A simple example:

> M <- 5
> a <- 1:10
> f <- function(x){cat(x+M,’ ’); return(x+M)}
> out <- mclapply(a,FUN=f,mc.cores=4)
6 10 14 7 11 15 8 12 9 13
> unlist(out)
[1] 6 7 8 9 10 11 12 13 14 15

Notice that cat() output shows the order in which the computations were done (out of order because of the
way it was spread across processors) but they are in order in the output list. Also notice that M was read
by each child thread from the higher-level environment without a problem. Beacuse I did not explicitly set
mc.preschedule to false, no load balancing was done, which is a good idea for this case.

When working in windows (or across multiple machines), parallel provides the functionality that was
in snow, which is slightly more cumbersome to write and slower to execute. Basically one has to call
makeCluster() before the parallel code and stopCluster() afterward. Instead of mclapply() we use
parLapply(). Any variables not passed to the function called by parLapply() must be exported into it
using clusterExport().

Within parallel and in several other packages there are other methods for parallelizing R code (for example,
the foreach package has convenient loop-level parallelization).

When writing parallel programming we must be careful about the scoping of our variables. We must
treat each function evaluation as if it was executed on a different thread, so it should not modify any top-
level variables. Modifying variables outside the scope of a function is poor programming practice in general
anyway.

Another point to remember is that when using parallel processing for any code that uses random number
generation, it is important to seed the random number generator for each thread with a different value.
Otherwise all threads may compute the same “random” values. There are functions within parallel and
other packages to do this.

17If we need to parallelize in such a way that we must pass multiple varying arguments to our function each time it is called,
we can create a list of lists. Each interior list contains the named arguments we would pass our function in one iteration. Then
we write a wrapper that calls our function using do.call(). The function do.call() passes the elements of a list as arguments
to a function.

61

Note: I frequently find myself using mclapply() and getting back a list of dataframes (with the same
column names) which I then want to row-bind into a single dataframe. The usual way to do this is

> MyDataFrame <- do.call(rbind,MyList)

but this calls rbind() once for each element of the list, making copies of the data over and over, so it is very
slow—sometimes impossibly slow. To do the same thing quickly we can use rbindlist() from the data.table
package.

> MyDataFrame <- rbindlist(MyList)

The latter example is several orders of magnitude faster than the former. Since parallel processing is typically
used when there is a lot of data to consider, I find myself needing to use rbindlist() almost every time.

10.12 Environments and Scope
Environments are a very complex subject in R so I will stick to what I have found useful and leave more
in-depth investigation to the interested reader. Though there is some disagreement on the right terminology,
I’ll use “environment” to represent the R container that holds the set of variables that are available for
reading and writing at a particular point in the execution of an R program.

When the program starts, variables created in open code are stored in the global environment. When a
function is called a new, empty environment is created (a “child” of the global environment) and any variables
created within the function are stored in that environment. If the function calls another function, yet another
environment is created. Since essentially everything that happens in R is a function call, environments are
constantly being created. When a function terminates, the environment created for it disappears along with
any variables created within it. This is common in functional programming languages.

Creation and modification of variables can only happen within the current environment. However, data
in parent (and grandparent, etc.) environments is available for reading without further effort. The rules
governing this are referred to as lexical scope, meaning if R can’t find a referenced variable it looks for that
variable in the parent environment, then the parent above that, etc. For example,

> addone <- function(){
+ return(a + 1)
+ }
> a <- 3
> addone()
[1] 4

Notice that this works even though a is not being passed to addone(). R searches the local environment
and doesn’t find it, so it searches the parent, finds it, does the addition and returns the expected result. This
works if we are just reading from the variable a, but we can’t modify it directly. Notice that if we modify a
within the function, a new variable is created in the local environment, which is a modified version of the a
above it. But the modified version is not retained after the function ends.

> addoneprint <- function(){
+ a <- a+1
+ cat(a,"\n")
+ }
> a <- 3
> addoneprint()
[1] 4
> a
[1] 3

Remembering that R traverses parent environments to read but that you can’t write to them is a key
habit for the programmer to keep in mind. There are ways around this restriction. For example, one could
use the superassignment operator, <<-.

62

> addoneprint <- function(){
+ a <<- a+1
+ cat(a,"\n")
+ }
> a <- 3
> addoneprint()
[1] 4
> a
[1] 4

Use of the superassignment operator can easily lead to subtle unexpected results and is almost universally
discouraged. Instead, create a copy of the data in the local environment and return it at the end of the
function, then overwrite the version in the parent environment. If the data is very unwieldy, consider a
strategy to pass by reference.

10.12.1 Passing by Reference

In many programs there is a large dataset that the programmer wants to modify but copying it over and
over each time a function is called can impose a large performance or memory penalty. I have seen (and
used) a number of ways around this restriction, some of which are very awkward. The solution we need is
a method for passing by reference: allowing a function to directly modify data from a parent environment
without making a copy.

In R we can create an empty environment, store variables within it, and pass it to functions (which does
not make copies of the contained variables). This is how I deal with data that I do not want to make a copy
of.

> fiveit <- function(thisenv){
> thisenv$a[3] <- 5
> }
> myenv <- new.env()
> myenv$a <- c(1,4,7)
> fiveit(myenv)
> myenv$a
[1] 1 4 5

There’s a little bit of hassle associated with referring to the environment every time we use data stored
inside it, but it’s easier and safer then most alternatives. If the dataset is of moderate size, passing by value
and overwriting is often easier. Also note that you can pass large datasets to R functions by value without
the overhead of making a copy as long as you do not modify these datasets within the function. That is, R
treats passed data as copy-on-write.

11 Changing Configurations

11.1 Default Options
A number of runtime options relating to R’s behavior are governed by the options() function. Running
this function with no arguments returns a list of the current options. One can change the value of a single
option by passing the option name and a new value. For temporary changes, the option list may be saved
and then reused.

> oldops <- options()
> options(verbose=true)
...
> options(oldops)

63

11.1.1 Significant Digits

Mathematical operations in R are generally done to full possible precision, but the format in which, for
example, numbers are saved to a file when using a write command depends on the option digits.

> options(digits=10)

increases this from the default 7 to 10.

11.1.2 What to do with NAs

The behavior of most R functions when they run across missing values is governed by the option na.action.
By default it is set to na.omit, meaning that the corresponding observation will be ignored. Other possibil
ities are na.fail, na.exclude, and na.pass. The value na.exclude differs from na.omit only in the type
of data it returns, so they can usually be used interchangeably.

These NA handling routines can also be used directly on the data. Suppose we wish to remove all missing
values from an object d.

> cleand <- na.omit(d)

Notice that na.omit() adds an extra attribute to d called na.action which contains the row names that
were removed. We can remove this attribute using attr().

> attr(cleand,"na.action")<-NULL

This is the general way to change attributes of an R object. We view all attributes using the attribute()
command.

11.1.3 How to Handle Errors

When an error occurs in a function or script more information may be needed than the type of error that
occurs. In this case, we can change the default behavior of error handling. This is set via the error option,
which is by default set to NULL or stop. Setting this option to recover we enter debug mode on error.
First R gives a list of “frames” or program locations to start from. After selecting one, the user can type
commands as if in interactive mode there. In the example below, one of the indices in my loop was beyond
the dimension of the matrix it was referencing. First I check i, then j.

> options(error=recover)
> source("log.R")
Error: subscript out of bounds

Enter a frame number, or 0 to exit

1: source("log.R")
2: eval.with.vis(ei, envir)
3: eval.with.vis(expr, envir, enclos)
4: mypredict(v12, newdata = newdata)

Selection: 4
Called from: eval(expr, envir, enclos)
Browse[1]> i
[1] 1
Browse[1]> j
[1] 301

Pressing enter while in browse mode takes the user back to the menu. After debugging, we can set error to
NULL again.

64

11.1.4 Suppressing Warnings

Sometimes non-fatal warnings issued by code annoyingly uglifies output. In order to suppress these warnings,
we use options() to set warn to a negative number. If warn is one, warnings are printed are printed as they
are issued by the code. By default warnings are saved until function completion warn=0. Higher numbers
cause warnings to be treated as errors.

12 Saving Your Work

12.1 Saving the Data
When we choose to exit, R asks whether we would like to save our workspace image. This saves our variables,
history, and environment. You manually can save R’s state at any time using the command

> save.image()

You can save one or several data objects to a specified file using the save() command.

> save(BYU,x,y,file="BYUINFO.Rdata")

saves the variables BYU, x, and y in the default R format in a file named “BYUINFO.Rdata”. They can be
loaded again using the command

> load("BYUINFO.Rdata")

The save() command preserves the same of the object or objects that you save. When you load them
back the names are kept. This is convenient when saving all the objects associated with a project, but it
can cause problems (like overwriting existing objects of the same name). As an alternative, we can save a
single object (but not its name) using saveRDS(). Then we load it back using readRDS().

> saveRDS(BYU,"BYU.rds")
> BYU2 <- readRDS("BYU.rds")

R can save to a number of other formats as well. Use write.table() to write a data frame as a
space-delimited text file with headers, for example. Some other formats are listed in section 2.7.

12.1.1 A Note About Scientific Notation

Note that sometimes R will print numbers in scientific notation, either to the screen, or into a .csv file
when using write.table(), which can sometimes be a problem. There are several ways to control this
behavior. The easiest is to set the scipen option. When set to 0 (the default) R decides when to use
scientific notation—it chooses scientific notation if that is shorter than fixed notation. If we set scipen to a
positive number, scientific notation will only be chosen if it is shorter by that many digits.

> options(scipen=10) # discourage scientific notation
> write.table(BYU,file=’BYUINFO.csv’,sep=’,’,row.names=F)
> options(scipen=0) # return to default setting

12.2 Saving the Session Output
We may also wish to write the output of our commands to a file. This is done using the sink() command.

> sink("myoutput.txt")
> a
> sink()

65

The output of executing the command a (that is, echoing whatever a is) is written to “myoutput.txt”. Using
sink() with no arguments starts output echoing to the screen again. By default, sink() hides the output
from us as we are interacting with R, so we can get a transcript of our session and still see the output by
passing the split=T keyword to tt sink()18 .

If we are using a script file, a nice way to get a transcript of our work and output is to use sink() in
connection with source().

> sink("myoutput.txt")
> source("rcode.R",echo=T)
> sink()

R can save plots and graphs as image files as well. Under windows, simply click once on the graph so
that it is in the foreground and then go to file/Save as and save it as jpeg or png. There are also ways to
save as an image or postscript file from the command line, as described in section 7.7.

12.3 Saving as LATEX
R objects can also be saved as LATEX tables using the latex() command from the Hmisc package. The most
common use we have had for this command is to save a table of the coefficients and estimates of a regression.

> reg <- lm(educ~exper+south,data=d)
> latex(summary(reg)$coef)

produces a file named “summary.tex” that produces the following when included in a LATEX source file19

summary Estimate Std. Error t value Pr(¿—t—)
(Intercept) 17.2043926 0.088618337 194.140323 0.00000e + 00
exper −0.4126387 0.008851445 −46.618227 0.00000e + 00
south −0.7098870 0.074707431 −9.502228 4.05227e − 21

which we see is pretty much what we want. The table lacks a title and the math symbols in the p-value
column are not contained in $ characters. Fixing these by hand we get

OLS regression of educ on exper and south
summary Estimate Std. Error t value Pr(> |t|)
(Intercept) 17.2043926 0.088618337 194.140323 0.00000e + 00
exper −0.4126387 0.008851445 −46.618227 0.00000e + 00
south −0.7098870 0.074707431 −9.502228 4.05227e − 21

Notice that the latex() command takes matrices, summaries, regression output, dataframes, and many
other data types. Another option, which may be more flexible, is the xtable() function from the xtable
package.

13 Final Comments
It is my opinion that R provides an effective platform for econometric computation and research. It has built-
in functionality sufficiently advanced for professional research, is highly extensible, and has a large community
of users. On the other hand, it takes some time to become familiar with the syntax and reasoning of the
language, which is the problem I seek to address here.

I hope this paper has been helpful and easy to use. If a common econometric problem is not addressed
here, I would like to hear about it so I can add it and future econometricians need not suffer through the
process of figuring it out themselves. Please let me know by email (if the date today is before, say, May 2009)
what the problem is that you think should be addressed. My email is g-farnsworth@kellogg.northwestern.edu.
If possible, please include the solution as well.

18Thanks to Trevor Davis for this observation.
19Under linux, at least, the latex() command also pops up a window showing how the output will look.

66

mailto:g-farnsworth@kellogg.northwestern.edu

14 Appendix: Code Examples

14.1 Monte Carlo Simulation
The following block of code creates a vector of randomly distributed data X with 25 members. It then creates
a y vector that is conditionally distributed as

y = 2 + 3x + E. (13)

It then does a regression of x on y and stores the slope coefficient. The generation of y and calculation of
the slope coefficient are repeated 500 times. The mean and sample variance of the slope coefficient are then
calculated. A comparison of the sample variance of the estimated coefficient with the analytic solution for
the variance of the slope coefficient is then possible.

>A <- array(0, dim=c(500,1))
>x <- rnorm(25,mean=2,sd=1)
>for(i in 1:500){
+ y <- rnorm(25, mean=(3*x+2), sd=1)
+ beta <- lm(y~x)
+ A[i] <- beta$coef[2]
+ }
>Abar <- mean(A)
>varA <- var(A)

14.2 The Haar Wavelet
The following code defines a function that returns the value of the Haar wavelet, defined by

ψ(H)(u) =

⎧ ⎪⎨ ⎪⎩

√
−1/ 2 −1 < u ≤ 0 √
1/ 2 0 < u ≤ 1 (14)
0 otherwise

of the scalar or vector passed to it. Notice that a better version of this code would use a vectorized comparison,
but this is an example of conditionals, including the else statement. The interested student could rewrite
this function without using a loop.

> haar <- function(x){
+ y <- x*0
+ for(i in 1:NROW(y)){
+ if(x[i]<0 && x[i]>-1){
+ y[i]=-1/sqrt(2)
+ } else if (x[i]>0 && x[i]<1){
+ y[i]=1/sqrt(2)
+ }
+ }
+ y
+ }

Notice also the use of the logical ‘and’ operator, &&, in the if statement. The logical ‘or’ operator is
the double vertical bar, ||. These logical operators compare the entire object before and after them. For
example, two vectors that differ in only one place will return FALSE under the && operator. For elementwise
comparisons, use the single & and | operators.

67

14.3 Maximum Likelihood Estimation
Now we consider code to find the likelihood estimator of the coefficients in a nonlinear model. Let us assume
a normal distribution on the additive errors

y = aLbKc + E (15)

Notice that the best way to solve this problem is a nonlinear least squares regression using nls(). We do
the maximum likelihood estimation anyway. First we write a function that returns the log likelihood value
(actually the negative of it, since minimization is more convenient) then we optimize using nlm(). Notice
that Y, L, and K are vectors of data and a, b, and c are the parameters we wish to estimate.

> mloglik <- function(beta,Y,L,K){
+ n <- length(Y)
+ sum((log(Y)-beta[1]-beta[2]*log(L)-beta[3]*log(K))^2)/(2*beta[4]^2) + \
+ n/2*log(2*pi) + n*log(beta[4])
+ }
> mlem <- nlm(mloglik,c(1,.75,.25,.03),Y=Y,L=L,K=K)

14.4 Extracting Info From a Large File
Let 301328226.csv be a large file (my test case was about 80 megabytes with 1.5 million lines). We want to
extract the lines corresponding to put options and save information on price, strike price, date, and maturity
date. The first few lines are as follows (data has been altered to protect the innocent)

date,exdate,cp_flag,strike_price,best_bid,best_offer,volume,impl_volatility,optionid,cfadj,ss_flag
04JAN1997,20JAN1997,C,500000,215.125,216.125,0,,12225289,1,0
04JAN1997,20JAN1997,P,500000,0,0.0625,0,,11080707,1,0
04JAN1997,20JAN1997,C,400000,115.375,116.375,0,,11858328,1,0

Reading this file on my (relatively slow) computer is all but impossible using read.csv().

> LENGTH<-600000
> myformat<-list(date="",exdate="",cp="",strike=0,bid=0,ask=0,
+ volume=0,impvolat=0,id=0,cjadj=0,ss=0)
> date=character(LENGTH)
> exdate=character(LENGTH)
> price=numeric(LENGTH)
> strike=numeric(LENGTH)
> f<-file("301328226.csv")
> open(f,open="r")
> titles<-readLines(f,n=1) # skip the first line
> i<-1
> repeat{
+ b<-scan(f,what=myformat,sep=",",nlines=1,quiet=T)
+ if (length(b$date)==0) break
+ if (b$cp=="P"){
+ date[i]<-b$date
+ exdate[i]<-b$exdate
+ price[i]<-(b$bid+b$ask)/2
+ strike[i]<-b$strike
+ i<-i+1
+ }
+ }
> close(f)

68

This read took about 5 minutes. Notice that I created the vectors ahead of time in order to prevent having
to reallocate every time we do a read. I had previously determined that there were fewer than 600000 puts in
the file. The variable i tells me how many were actually used. If there were more than 600000, the program
would still run, but it would reallocate the vectors at every iteration (which is very slow).

This probably could have been much speeded up by reading many rows at a time, and memory could
have been saved by converting the date strings to dates using as.Date() at each iteration (see section 2.5).
I welcome suggestions on improvements to this example.

14.5 Contour Plot
This code produces a contour plot of the function posterior(), which I had defined elsewhere.

Posterior using a flat prior

sigma squared

ga
m

m
a

0.0 0.1 0.2 0.3 0.4 0.5

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Posterior Mode

> x <- seq(0,.5,.005)
> y <- seq(0.7,1.3,.005)
> output <- matrix(nrow=length(x),ncol=length(y))
> for(i in 1:length(x)) {
+ for(j in 1:length(y)) {
+ output[i,j] <- posterior(c(x[i],y[j]))
+ }
+ }
> contour(output,x=x,y=y,xlab="sigma squared",ylab="gamma",main="Posterior using a flat prior")
> points(0.04647009 , 0.993137,pch=8)
> arrows(.1,.75,0.04647009,0.993137)
> text(.09,.73,"Posterior Mode",pos=4)

69

MIT OpenCourseWare
http://ocw.mit.edu

14.381 Statistical Method in Economics
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Introductory Comments
	What is R?
	How is R Better Than Other Statistical Software?
	Obtaining R
	Using R Interactively and Writing Scripts
	Getting Help

	Working with Data
	Basic Data Manipulation
	Sorting Data
	Caveat: Math Operations and the Recycling Rule
	Important Data Types
	Atomic Data Types
	Vectors
	Arrays, Matrices
	Dataframes
	Lists
	Functions
	S3 Classes
	S4 Classes

	Working with Dates
	Merging Dataframes
	Using SQL Commands Directly on R Dataframes

	Opening a Data File
	Issuing System Commands—Directory Listing
	File Operations
	Reading Data From the Clipboard
	Editing Data Directly

	Working With Very Large Data Files
	Reading fields of data using scan()
	Utilizing Unix Tools
	Using Disk instead of RAM
	Using SQL Databases
	Changing Data from Wide to Long Format
	Going from Long Format to Wide
	Going from Wide Format to Long

	A Faster Reshape

	Cross Sectional Regression
	Ordinary Least Squares
	Extracting Statistics from the Regression
	Heteroskedasticity and Friends
	Breusch-Pagan Test for Heteroskedasticity
	Heteroskedasticity (Autocorrelation) Robust Covariance Matrix

	Linear Hypothesis Testing (Wald and F)
	Weighted and Generalized Least Squares
	Models With Factors/Groups

	Special Regressions
	Fixed/Random Effects Models
	Fixed Effects
	Random Effects

	Qualitative Response
	Logit/Probit
	Multinomial Logit
	Ordered Logit/Probit

	Tobit and Censored Regression
	Heckman-Type Selection Models
	Quantile Regression
	Robust Regression - M Estimators
	Nonlinear Least Squares
	Two Stage Least Squares on a Single Structural Equation
	Systems of Equations
	Seemingly Unrelated Regression
	Two Stage Least Squares on a System

	Time Series Regression
	Differences and Lags
	Filters
	Canned AR and MA filters
	Manual Filtration
	Hodrick Prescott Filter
	Kalman Filter

	ARIMA/ARFIMA
	ARCH/GARCH
	Basic GARCH–garch()
	Advanced GARCH–garchFit()
	Miscellaneous GARCH–Ox G@RCH

	Correlograms
	Predicted Values
	Time Series Tests
	Durbin-Watson Test for Autocorrelation
	Box-Pierce and Breusch-Godfrey Tests for Autocorrelation
	Dickey-Fuller Test for Unit Root

	Vector Autoregressions (VAR)

	Plotting
	Plotting Empirical Distributions
	Histograms
	Kernel Density Estimates

	Contour Plots
	Adding a Legend
	Adding Arrows, Text, and Markers
	Changing the Tick Marks
	Multiple Plots
	Simple Grids
	More Advanced Layouts
	Overplotting: Multiple Different Plots on the Same Graph

	Saving Plots—png, jpg, eps, pdf, xfig
	Fixing Font and Symbol Size in Pdfs
	Adding Greek Letters and Math Symbols to Plots
	Changing the Font in Plots
	Other Graphics Packages

	Statistics
	Working with Common Statistical Distributions
	P-Values
	Sampling from Data

	Math in R
	Matrix Operations
	Matrix Algebra and Inversion
	Factorizations

	Numerical Optimization
	General Unconstrained Minimization
	General Minimization with Linear Constraints

	Quadratic Programming
	Root Finding
	Numerical Integration

	Programming
	Writing Functions
	Looping
	Avoiding Loops
	Using Vector Math (Implicit Loops)
	Applying a Function to an Array, List, or Vector
	Applying a Function to By-Groups
	Replicating

	Conditionals
	Binary Operators
	WARNING: Conditionals and NA

	The Ternary Operator
	Outputting Text
	Pausing/Getting Input
	Timing Blocks of Code
	Calling C functions from R
	How to Write the C Code
	How to Use the Compiled Functions

	Calling R Functions from C
	Parallel Computing
	Environments and Scope
	Passing by Reference

	Changing Configurations
	Default Options
	Significant Digits
	What to do with NAs
	How to Handle Errors
	Suppressing Warnings

	Saving Your Work
	Saving the Data
	A Note About Scientific Notation

	Saving the Session Output
	Saving as LaTeX

	Final Comments
	Appendix: Code Examples
	Monte Carlo Simulation
	The Haar Wavelet
	Maximum Likelihood Estimation
	Extracting Info From a Large File
	Contour Plot

