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1 Modes of Convergence

1.1 Almost Sure Convergence

Definition 1. Let {Xn be a sequence of random variables. Then a.s
Xn → X if}

P ({ω : lim Xn(ω) = X(ω)
n→∞

}) = 1

Remark. Almost sure convergence means a sequence of functions Xn(ω) converges point-wise to X(ω)
except for some measure zero set.

Theorem. a.s
Xn → X if and only if

∀ε > 0, lim P (|Xk
m→∞

−X| ≤ ε ∀k ≥ m) = 1

Proof. (⇒) Let Ω0 = {ω : limn Xn(ω) = X(ω)}. Suppose P (Ω0) = 1. Let ε > 0 be given.→∞
Let Am = ∩∞k=m{|Xk − X| ≤ ε}. Then Am ⊂ Am+1 ∀m and limm P (Am) = P (∪∞m=1Am) by→∞
continuity of probability measure. For each ω0, there exists m(ω0) such that |Xk(ω0)−X(ω0)| ≤ ε for
all k ≥ m(ω0). Therefore, ∀ω0 ∈ Ω0, ω0 ∈ Am for some m and we can conclude that Ω0 ⊂ ∪∞m=1Am
and 1 = P (Ω0) ≤ P (∪∞m=1Am) = limm P (A→∞ m) = 1.
(⇐) Let Am( 1 ) be a set defined above with given ε = 1 . Suppose that limm P (A→∞ m( 1 )) = 1n n n for
all n. By continuity, we have P (A( 1 )) = 1n where A( 1 ) =n ∪∞m 1

=1Am( )n . Let A = ∩∞n=1A( 1 )n . Then
by the continuity, P (A) = 1 because A( 1 )n ’s are monotone decreasing sequence of sets. Therefore,
∀ω0 ∈ A and ∀ε > 0, there exists M such that |Xm(ω0) − X(ω0)| ≤ ε for all m ≥ M . We conclude
that P ({ω : limm Xm(ω) = X(ω)→∞ }) = 1.

1.2 Lp-convergence

Definition 2. Let Lp

p ∈ (1,∞) and {Xn} be a sequence of random variables. Then,Xn → X if

E|Xn|p <∞, E|X|p and lim E n→∞
|X −X|p = 0

n

Remark. We often use the case when p = 2 because L2-space is an inner product space and many
interesting results can be derived.

1.3 Convergence in probability

Definition 3. p
Xn → X if

lim P (
n→∞

|Xn −X| ≤ ε) = 1 ∀ε > 0
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1.4 Convergence in distribution
Definition 4. Let {FXn} and FX be distribution functions of random variables {Xn} andX. Xn ⇒ X
if

lim FXn
(x) = FX(x) ∀x ∈ C(FX)

n→∞

where C(FX) denotes the set of all points where FX is continuous.

1.5 Relations of modes of convergence

1. a.s
Xn → X implies p

Xn → X (Obvious by the Theorem above)

2. Lp

X → p
n X implies Xn → X (Use Chebyshev inequality or its variants)

3. p
Xn → X implies Xn ⇒ X
(proof) Let x ∈ C(FX) and ε > 0 be given. We have,

FXn(x) = P [Xn ≤ x] = P [{Xn ≤ x} ∩ {|Xn −X| < ε}] + P [{Xn ≤ x} ∩ {|Xn −X| ≥ ε}]
≤ P [X ≤ x+ ε] + P [|Xn −X| ≥ ε]

Hence, lim supFXn
(x) ≤ FX(x + ε) because the latter term converges to 0 by in probability

convergence. Similarly,

1− FXn
(x) = P [Xn ≥ x] = P [{Xn ≥ x} ∩ {|Xn −X| < ε}] + P [{Xn ≥ x} ∩ {|Xn −X| ≥ ε}]

≤ P [X ≥ x− ε] + P [|Xn −X| ≥ ε]

Hence, lim inf FXn
(x) ≥ FX(x − ε) and we conclude that limFXn

(x) = FX(x) by continuity of
FX at x.

4. a.s Lp

Xn → X does not necessarily imply Xn → X.
(counterexample) Let Xn be random variables defined on (Ω,F , P ) where Ω = (0, 1), F is Borel
sets on (0, 1) and P is the Lebesgue measure. Let

1

Xn = n p 1 0<ω< 1 (ω). Then{ } ∀ω ∈ (0, 1) there
exists N such that for

n

Xn(ω) = 0 all n > N . Thus, Xn converges to 0 everywhere and obviously
a.s. 1/n

Xn → 0. However, E|Xn|p =
´

ndω = 1
0

for all n and we can see that Xn does not converge
in Lp to 0.

5. Lp

Xn → X does not necessarily imply a.s
Xn → X.

(counterexample) Let Yk,j = 1 j−1<ω< j )where k ≥ 1, 1{ k k
≤ j ≤ k. Let Xn be the lexicographic

ordering of Yk,j . That is, X1 = Y1,1, X2 = Y2,1, X3 = Y2,2, X4 = Y3,1 and so on. Let kn be the
corresponding value of k for given

p

X . Then it is easy to see that E| L
X |pn n = 1 .kn

Thus, Xn → 0.
However, given any ω ∈ (0, 1), Xn does not converge to 0 because Xn(ω) = 1 infinitely often.

6. Two counterexamples above directly imply that the converses of both (1) and (2) are not true.

7. Xn ⇒ X does not necessarily imply p
Xn → X

(counterexample) Let our probability space have sample space Ω = (− 1 , 1 )2 2 equipped with
Lebesgue measure. Let X(ω) = ω and Xn = −X. It is easy to show that both X and
−X has uniform distribution on (− 1 , 1 )2 2 and therefore Xn ⇒ X. However, given ε = 1

2 ,
P (|X − X| < ε) = P ({ω : 2|ω| > 1 1

n 2}) = 2 for all n. We conclude that Xn does not con-
verge in probability to X.
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2 Limit Theorems and Delta Method

2.1 Law of Large Numbers
Theorem. Let {Xn} be a sequence of independent and identically distributed random variables. Sup-
pose E|X1| <∞. Then we have

n
1 ∑

a.s
Xi

n
i=1

→ µ

where µ = E[X1].

Remark. This is known as Strong law of large numbers. From the first section, we can see that it
directly implies the weak law of large numbers. i.e.

n
1 ∑ p

Xi µ
n
i=1

→

We can considerably relax the i.i.d. condition and there are many versions of both SLLN and WLLN.
However, some kind of independence structure is essential for any law of large numbers.

2.2 Central Limit Theorem
Theorem. Let {Xn} be a sequenc∑ e of independent and identically distributed random variables. Sup-
pose E|X1|2 <∞. Let Xn = 1

iX
2

in , µ = E[X1] and σ = E[X2
1 ]− E[X1]2. Then we have

√ Xn
n(

− µ
) N(0, 1)

σ
⇒

where N(0, 1) denotes a random variable whose distribution function is
x 1 x2

F (x) =

ˆ
√ exp(

2π
− )dx

2−∞

2.3 Delta Method
Lemma. (Taylor Expansion) Let g(x) be a r-times continuously differentiable function in the neigh-
borhood ofa. Then we have ∑r g(n)(a)(x

g(x) =
− a)n

+Rr(x
n!

n=0

− a)

where Rr(h) = o(hr) or in other words R (h)lim r
h→0 hr = 0.

Definition. For a sequence of random variable {Xn} and a positive sequence an, Xn = Op(an) if for
any ε > 0, there exists C and N such that P (

p

|Xn

an
| > C) < ε for all n > N .

X = o X
p(an) if an → 0.

Lemma. Op(an)op(bn) = op(anbn)

Proof. LetXn = Op(an) and Yn = op(bn). Let ε, η > 0 be given. Choose C such that P (|Xn

an
Yn

| > C) < η
2 .

Choose N such that P (| | < ε ) < η nbn C 2 for all > N . Then we have,

X
P (| nYn Yn X| n

< ε) ≤ P (C| | < ε) + P (| | > C) ≤ η ∀n > N
anbn bn an

and we conclude that pXnYn

anbn
→ 0.
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Lemma. If Xn ⇒ X, then Xn = Op(1).

Proof. Let ε > 0 be given. Since X has a distribution function FX and limx F→∞ X(x) = 1, there
exists C such that P (|X| > C) < ε

2 where FX is continuous at C. By the convergence, we can choose
N such that |FXn(C) − FX(C)| < ε for all n > N . Thus we conclude that P (|Xn >2 | C) < ε for all
n > N .

Theorem. (Delta Method) Let
√
n(Yn − µ) ⇒ N(0, σ2) and g(y) be a continuously differentiable in

the neighborhood of µ with g′(µ) = 0. Then we have,
√
n(g(Yn)− g(µ))⇒ N(0, g′(µ)2σ2)

Proof. Using Taylor expansion, we can get
√
n(g(Yn)− g(µ)) = g′(µ)

√
n(Yn − µ) +

√
nR1(Yn − µ)

Thus, it is sufficient to show that
√
nR (Y − Rµ) = o (1). Let m(h) = 1(h)

1 n p h . By Taylor theorem, we
have limh 0m(h) = 0. Let ε > 0 be given. Choose δ > 0 such that→

|m(h)| < ε ∀h < δ

We have,
lim P (
n→∞

|m(Yn − µ)| < ε) ≥ lim P (
n→∞

|Yn − µ| < δ) = 1

by WLLN. Thus, m(Yn − µ) = op(1) and by the lemmas above, we can get the desired result.

Remark. For op and Op notations, equality (=) means logical implication from left to right. So one
can say o(1) = op(1) for example. You can derive other elementary results using op and Op notations
easily.

3 From Class

3.1 Transformations
Theorem. (1-to-1 transformation) Let X be a continuous random variable with distribution function
FX(x) defined on X and let fX(x) = F ′(x). Let g(x) be a continuously differentiable strictly increasing
function. Let Y = g(X) and Y = g(X ) . Then we have{

dg−1(y)fX(g−1(y)) ∀y
fY (y) = dy ∈ Y

0 otherwise

Proof. First note that FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y)). Thus we
have,

FY (y + ∆ 1
y)− FY (y) FX(g− (y + ∆y))− FX(g−1(y))

=
∆y ∆y

FX(g−1(y + ∆y))− FX(g−1(y)) ∆
=

∆x
· x

∆y

where ∆x = g−1(y + ∆y) − g−1(y). Taking ∆y → 0, we get the desired result by differentiability of
g.

Remark. It is obvious that you just need to change the sign for a strictly decreasing function.
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Theorem. (K to 1 transformation) Suppose there exists a partition, A0, A1, . . . , AK of X and fX(x)
is continuous on each Ai. Let g(x) be a function such that each gi(x) ≡ g(x)1{x∈Ai

(x)’s are strictly}
monotone on Ai and continuously differentiable. Let Y = g(X). Then we have

K
dg−1(y)

fY (y) =
∑

f (g−1X i (y))| i y)
dy

|1{y (∈g(Ai)}
i=1

Example. (χ2(1) random variable) Let f √1X(x) = exp(− 1x2). Let Y = X2
2π 2 . Then we have

fY (y) = fX(
√ 1 1
y)

2
√ + X(

√ 1 1
f y)

y 2
√ =
y

√ 1

y− 2 exp(− y), y
2π 2

∈ (0,∞)

and get the χ2(1) density.
(log-normal variable) Now let Y = exp(X). Then we have

1 1 1
fY (y) = fX(log y) = √ exp(− (log y)2), y ∈ (0, )

y y 2π 2
∞

and get the standard log-normal density.

3.2 Short Note on Order Statistics
Definition. Let {X1, X2, . . . , Xn} be a random sample. (which means Xi’s are i.i.d random variables)
Order statistic (X(1), X(2), . . . X(n)) is the ascending ordering of the random sample. i.e. X(1) ≤
X(2) ≤ X(3) ≤ . . . ≤ X(n). rth order statistic is X(r).

Remark. Note that the order statistic is a significant data reduction. There are n! different random
samples that can generate the same order statistic. In general, it is often the most we can get without
losing information. For parametric families, we can do much better than order statistic. (See sufficiency
part.)

Theorem. Let Xi has distribution function F (x) and Xi’s are continuous random variable. Then we
have

n!
fX(r)(x) = f (x)F (x)rX

−1(1
(r − 1)!(n− r)!

− F (x))n−r

Proof. We consider F (r)
X(r)(x + ∆) − FX(r)(x) = P (X ∈ (x, x + ∆]). Note that it is equal to the

probability that r − 1 Xi’s are smaller than x, 1 Xi is in (x, x + ∆] and n − r Xi’s are greater than
x+ ∆. That is,

P (X(r) n!∈ (x, x+ ∆]) = F (x)r−1(F (x+ ∆) F (
(r − 1)!1!(n− r)!

− x))(1− F (x+ ∆))n−r

Therefore, dividing by ∆ and taking ∆→ 0, we can have the desired result.

Example. Let X1, X , . . . ,X (1)
2 n be a random sample from U [0, λn]. Then the density function of X

is
n! 1 x

f n x n n
X(1)(x) = f

n− X(x)(1
1)!

− F (x)) = n · (1 ) = (1 )
( λn

−
λn

−
λn

Note that as n→∞, the density function converges to 1 exp(−x ) Xλ λ . Think of each i to be life span of
an independent component which can fail at any time before λn. Then it makes sense to think X(1)

as the life span(or time before failure) of the machine built with those components. This explains why
exponential distribution is often used for duration models.
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