14.384 Time Series Analysis, Fall 2007

Professor Anna Mikusheva
Paul Schrimpf, scribe
September 25, 2007
Corrected October, 2012 Lecture 10

Introduction to VARs

Wold Decomposition Theorem

Theorem 1 (Wold decomposition). Let y_{t} be a 2nd order stationary process with $E y_{t}=0$. Then y_{t} could be written as $y_{t}=v_{t}+c(L) e_{t}$, where

1. $e_{t}: E e_{t}=0, E e_{t} e_{t}^{\prime}=\Omega$, and $e_{t} \in \operatorname{span}\left\{y_{t}, y_{t-1}, \ldots\right\}=I_{t}$ (i.e. e_{t} are fundamental)
2. $E e_{t} e_{s}^{\prime}=0$ for all $t \neq s$
3. $\sum_{j=0}^{\infty}\left\|c_{j}\right\|^{2}<\infty$
4. v_{t} is deterministic, that is $v_{t} \in I_{-\infty}=\cup_{j=0}^{\infty} I_{t-j}$

Remark 2. The $\operatorname{span}\left\{y_{t}, y_{t-1}, \ldots\right\}=I_{t}$ is the space of all linear combinations of $\left\{y_{t}, y_{t-1}, \ldots\right\}$.
Proof. The theorem is stated for vector processes, but we'll just prove it in the scalar case.
We will prove the theorem by constructing e_{t} and showing that it satisfies the conditions stated. Let $e_{t}=y_{t}-\hat{E}\left(y_{t} \mid I_{t-1}\right)=y_{t}-a(L) y_{t-1}$, where $\hat{E}\left(y_{t} \mid I_{t-1}\right)$ is the best linear forecast of y_{t} from past y. Note that the form of this forecast $(a(L))$ does not depend on t. This is because y_{t} is second order stationary, and the best linear forecast only depends on the first and second moments of y_{t}. By best linear forecast, we mean that $a(L)$ solves:

$$
\min _{\left\{a_{j}\right\}} E\left(y_{t}-\sum_{j=1}^{\infty} a_{j} y_{t-j}\right)^{2}
$$

The first order conditions are

$$
\begin{aligned}
\frac{\partial}{\partial a_{j}}: E\left[y_{t-j}\left(y_{t}-\sum_{j=1}^{\infty} a_{j} y_{t-j}\right)\right] & =0 \\
E\left[y_{t-j} e_{t}\right] & =0
\end{aligned}
$$

So e_{t} is uncorrelated with $y_{t-j} \forall j>0$. This implies that $I_{t}=I_{t-1} \oplus\left\{e_{t}\right\}$.
We now verifty that e_{t} satisfies conditions 1-4.

1. $E y_{t}=0 \forall t$ implies that $E e_{t}=0$.

Also, $\operatorname{Var}\left(e_{t}\right)=E\left(y_{t}-a(L) y_{t}\right)^{2}$ is just a function of the covariances of y_{t} and a_{j}, so $\operatorname{Var}\left(e_{t}\right)=\sigma^{2}$ is constant.
2. $E e_{t} y_{t-j}=0 \forall j \geq 1$, and $e_{t-j}=y_{t-j}-a(L) y_{t-j}$ implies $E e_{t} e_{t-j}=0$.
3. By definition of e_{t},

$$
y_{t}=e_{t}+\sum_{k=1}^{\infty} a_{k} y_{t-k}
$$

Repeatedly substituting for y_{t-k} gives

$$
\begin{aligned}
y_{t} & =e_{t}+\sum_{k=1}^{\infty} a_{k} y_{t-k} \\
& =e_{t}+a_{1}\left(e_{t-1}+\sum_{k=1}^{\infty} a_{k} y_{t-1-k}\right)+\sum_{k=2}^{\infty} a_{k} y_{t-k} \\
& =e_{t}+a_{1} e_{t-1}+\sum_{k=1}^{\infty} \tilde{a}_{k} y_{t-k-1} \\
& =e_{t}+a_{1} e_{t-1}+v_{t}^{1} \\
& \vdots \\
& =\sum_{j=0}^{k} c_{j} e_{t-j}+v_{t}^{k}
\end{aligned}
$$

where $v_{t}^{k} \in \operatorname{span}\left\{y_{t-k-1}, y_{t-k-2}, \ldots\right\}$. Consider:

$$
\begin{aligned}
E\left(y_{t}-\sum_{j=0}^{k} c_{j} e_{t-j}\right)^{2} & =E y_{t}^{2}+\sum_{j=0}^{k} c_{j}^{2} \sigma^{2}-2 \sum_{j=0}^{k} c_{j} E\left[y_{t} e_{t-j}\right] \\
& =E y_{t}^{2}+\sum_{j=0}^{k} c_{j}^{2} \sigma^{2}-2 \sum_{j=0}^{k} c_{j}^{2} \sigma^{2} \\
& =E y_{t}^{2}-\sum_{j=0}^{k} c_{j}^{2} \sigma^{2}
\end{aligned}
$$

where we used the fact that $E\left[y_{t} e_{t-j}\right]=E\left[\left(\sum_{l=0}^{k} c_{l} e_{t-l}+v_{t}^{k}\right) e_{t-j}\right]=c_{l} \sigma^{2}$. Now we know that $E\left(y_{t}-\right.$ $\left.\sum_{j=0}^{k} c_{j} e_{t-j}\right)^{2} \geq 0$. Therefore, it must be that $\sum_{j=0}^{k} c_{j}^{2} \leq \frac{E y_{t}^{2}}{\sigma^{2}}$ and $\sum_{j=0}^{\infty} c_{j}^{2} \leq \infty$.
This implies that, $\sum_{j=0}^{\infty} c_{j} e_{t-j}$ is well-defined.
4. Finally, $v_{t}=y_{t}-\sum_{j=0}^{\infty} c_{j} e_{t-j} \in I_{-\infty}$.

Discussion

Definition 3. If $v_{t}=0$, the y_{t} is called linearly regular.

- Wold decomposition (an MA representation satisfying conditions (1)-(4) of the theorem)is "unique." We put unique in quotes, because it is only unique up to a rotation of e_{t}. Let R be a rotation. $e_{t}=R u_{t}$, then $y_{t}=c(L) R u_{t}=\tilde{c}(L) u_{t}$, where $\tilde{c}_{j}=c_{j} R$. What is really unique is the space spanned by $\left\{e_{t}\right\}$. Structural VARs are about how we pick a particular rotation of the, and then attach interpretations to the components of e_{t}.
- It's true that any 2nd order stationary process has an MA representation, but that doesn't mean that it's always a good idea to study the MA representation.
Example 4. Two-state Markov chain: $\left\{\begin{array}{l}P\left(y_{t}=1 \mid y_{t-1}=1\right)=p \\ P\left(y_{t}=0 \mid y_{t-1}=0\right)=q\end{array}\right.$. This is 2nd order stationary and
has the following MA representation:

$$
\begin{aligned}
E\left(y_{t} \mid y_{t-1}\right) & = \begin{cases}p & y_{t-1}=1 \\
1-q & y_{t-1}=0\end{cases} \\
& =1-q+y_{t-1}(q-1+p)
\end{aligned}
$$

so

$$
\begin{aligned}
y_{t} & =1-q+y_{t-1}(q-1+p)+e_{t} \\
& =\frac{1-q}{2-p-q}+\sum_{j=0}^{\infty}(p+q-1)^{j} e_{t-j}
\end{aligned}
$$

where

$$
e_{t}= \begin{cases}1-p & \text { prob } p \mid y_{t-1}=1 \\ -p & \text { prob } 1-p \mid y_{t-1}=1 \\ -(1-q) & \text { prob } q \mid y_{t-1}=0 \\ q & \text { prob } 1-q \mid y_{t-1}=0\end{cases}
$$

The MA representation is not the best description of the dynamics in this case. This example is simple, but the point is more general. There are macro models with simple state-space representations and complicated MA representations.

- There are many MA representations. The Wold representation is only unique up to rotation when you require the MA to be fundamental.
Example 5. Suppose $y_{t}=e_{t}+\theta e_{t-1}$, $\operatorname{Var}\left(e_{t}\right)=\sigma^{2}$. Then $\gamma_{0}=\left(1+\theta^{2}\right) \sigma^{2}, \gamma_{1}=\theta \sigma^{2}, \gamma_{j}=0 \forall j>1$.
Consider $y_{t}=\eta_{t}+\frac{1}{\theta} \eta_{t-1}$ with $\operatorname{Var} \eta_{t}=\theta^{2} \sigma^{2}$. It is easy to see that this process has the same covariances. However, only the first representation is fundamental.

$$
\begin{aligned}
& y_{t}=(1+\theta L) e_{t} \\
& e_{t}=(1+\theta L)^{-1} y_{t}=\sum_{j=0}^{\infty}(-\theta)^{j} y_{t-j}
\end{aligned}
$$

For the second process, first define $F=L^{-1}$.

$$
\begin{aligned}
y_{t} & =(\theta F+1) \eta_{t-1} \\
\eta_{t-1} & =\theta \sum_{j=0}^{\infty}(-\theta)^{j} F^{j} y_{t}
\end{aligned}
$$

Remark 6. It is possible that your model has a non-fundamental MA representation. A fundamental representation requires that your shocks are spanned by the set of variables in your VAR. For example, if you're looking at shocks to money supply in a VAR with money and output, it is very likely that the Fed looks at variables other than output and money and when choosing policy, so shocks to the money supply may not be fundamental. One solution might be to include more variables in your VAR. Relatedly, you might use a factor-augmented VAR.

Remark 7. Relation to spectrum decomposition: there are three ways to represent a process: the Wold decomposition, the covariances, and the spectrum. There is a 1-1 mapping among these representations, in the following sense: there is a one-to-one mapping between the spectrum and the set of auto-covariances; there is also a 1-1 mapping between autocovariances and the set of coefficients of the fundamental MA representation.

MIT OpenCourseWare
http://ocw.mit.edu

14.384 Time Series Analysis

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

