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VARs

Notation and some Linear Algebra

Let
p

yt =
∑

ajyt−j + et (1)
j=1

where yt and et are k × 1, and aj is k × k. et is white noise with Eete
′
t = Ω and Eete

′
s = 0

Lemma 1. is stationary if det
(

− ∑p j
)

= 0 for all | | ≤ 1, i.e. all roots of det
(

− ∑p
y I j ajz z I j

t k =1 k j=1 ajz

are outside the unit circle.

)

Definition 2. Companion form of (1) is:

Yt = AYt−1 + Et,

where ⎡ a a ... a
yt

⎤ ⎡
1 2 p e
I 0 ... 0 t

yt 1

⎤
0− 0 0

⎡ ⎤
Yt =

⎢ ⎥⎢⎢ . = I .⎣ ..

⎢⎢ ⎥⎥ ⎢ ⎥
yt p− +1

⎥ ⎥⎦⎥ ..., A ⎢⎢⎢ ⎥⎥ ,
. .

Et = ⎢⎢ .
⎥⎥⎣ ⎦. . . .. . .. 0

I 0

⎣ ⎦
so Yt and Et are kp × 1 and A is kp × kp.

So, any VAR(p) can be wrote as a multi-dimensional VAR(1). From a companion form one can note that

Σ =Y AΣYA′ + ΣE

This may help to calculate variance-covariance structure of VAR. In particular, we may use the following
formula from linear algebra:

vec(ABC) = (C ′ ⊗ A)vec(B),

here ⊗ stays for tensor⎡ product and⎤ vec(A) transforms a matrix to a vector according to the following
a11 a12

semantic rule: if A = ⎣ a21 a22
⎦, then vec(A) = [a11, a12, a21, a22, a31, a32]

′

a31 a32

vec(Σ ) =vec (Y AΣYA′ + Σ )E
=(A⊗A)vec(Σ ) + vec(Σ )Y E
⇒

vec(Σ ) = (I − ( ))Y A⊗A −1 vec(Σ )E
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Estimation 2

Estimation

Lemma 3. MLE (with normal error assumption)= OLS equation-by-equation with Ω̂ = 1
∑

êteT
′̂
t

Intuition: all variables are included in all equations, so there is nothing gained by doing SUR. This also
implies that OLS equation by equation is asymptotically efficient. The usual statements of consistency and
asymptotic normality hold, as well as OLS formulas for standard errors.

Granger Causality

Granger Causality is a misleading name. It would be better called Granger predictability.

Definition 4. y fails to Granger cause x if it’s not helpful in linear predicting x (in MSE sense). More
formally,

MSE
[
Ê(xt+s|xt, xt 1, ...)

] [
= MSE Ê(x− t+s|xt t, ..., y , yt , ...) , s > 0−1

]
∀

where Ê(xt|z) denotes the best linear prediction of xt given z

A test of Granger causality is to run OLS:

xt = α1xt 1 + ... + α− pxt−p + β1yt + ... + β y + e−1 p t−p t

and test H0 : β1 = β2 = ... = 0.
Note that:

• Granger causality is not related to economic causality, it’s more about predictability.

• There could be simultaneous casualty or omitted variable problems. For example, there may be a
variable z that causes both y and x but with the different lag(sluggish response). If one does not
include z (omitted variable), it may look like x causes y.

• Forward looking (rational) expectations may even reverse the causality. For example, suppose analysts
rationally predict that a stock is going to pay high dividends tomorrow. That will provoke people
to buy the stock today, and the price will rise. In the data you would observe that the price rise is
followed by high dividends. So, we would find that prices Granger cause dividends, even though it was
really that anticipated high dividends caused high prices. Or increase in orange juice price Granger
causes bad weather in Florida.

How to do Granger causality in multivariate case?
Assume y1t is k1 × 1 vector and y2t is k2 × 1. Assume that we have VAR system[

y1t A1(L)y
= 1t−1 + A2y2t−1 e

+ 1t

y2t

] [
B1(L)y1t−1 + B2y2t−1

] [
e2t

]

Group of variables y2 fails to Granger cause y1 if A2 = 0. To perform this test we have to run unrestricted
regression y = A (L)y +A y +eu

1t 1 1t 1 2 2t 1 t and restricted regression y1t = A1(L)y− − 1t 1+e− t . Then we estimate
the corresponding variance-covariance matrix Ωu = 1

∑T u u′
and Ωr = 1

∑T r r′
T t=1 e et t T t=1 etet . The test statistic

compares these matrices:
LR = T (log |Ωr| − log |Ωr|)

Under the null (absence of Granger Causality) LR statistic is asymptotically χ2 with the degrees of freedom
equal to the number of restrictions imposed.
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Reporting Results 3

Figure 1: Impulse-response function

Impulse Response

2.5

Rep2 orting Results

Reporting the matrix of coefficients is not very informative. There are too many of them, and the coeffi-
cien

A
m

pl
itu

dets 1.5are difficult to interprete anyway. Instead, people present impulse-response functions and variance
decompositions.

Impulse-resp1 onse

Suppose

0.5 yt = a(L)yt−1 + et

with MA representation
0

yt = c(L)et
0 5 10 15 20 25

and SamplesDut = et such that ut are orthonormal, i.e. Eutu
′
t = I. Let c̃(L) = c(L)D, so

yt = c̃(L)ut

Definition 5. The impulse-response function is ∂yi
t

k . It is the change in yi
∂u t in response to a unit change

t−j

in uk
t j holding all other shocks constant. We can plot the impulse-response function as in figure 1.−

To estimate an impulse-response, we would

1. Estimate VAR by OLS – â

2. Invert to MA

3. Find and apply rotation D to get orthonormal shocks – the impulse response is given by ĉ̃
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Impulse-response 4

Standard Errors

Delta-method To calculate standard errors, we can apply the delta-method to â – the ĉ̃ are just some
complicated function of â. In practice, we can do this recursively:

yt =a1yt 1 + ... + apyt +− −p et

=a1(a1yt 2 + ... + apyt p 1 + e ) +− − − t−1 a2yt−2 + ... + yt−p + et

...

so, c 2
1 = a1, c2 = a2 +a1, etc. We can apply the delta-method to each of these coefficients. We’d also need to

apply the delta-method to our estimate of D. Sometimes, this is done in practice. However, it is not really
the best way, for two reasons:

• We estimate many aj from not all that big of a sample, so our asymptotics may not be very good.

• This is made even worse by the fact that ck are highly non-linear transformations of aj

Instead of the delta-method, we can use the bootstrap.

Bootstrap The typical construction of bootstrap confidence sets would be the following:

1. run regression yt = c + a1yt 1 + ... + apy ...,− t to−p + et get c,̂ a1, ap and residuals et

2. Invert the estimated AR process to get the estimates of impulse

̂ ̂
response ĉj from

̂
a1, ..., ap

3. For b = 1..B

̂ ̂
(a) Form yt,b

∗ = ĉ + â1yt
∗

1,b + ... + âpyt
∗ + e− −p,b

∗
t,b, where e∗t,b is sampled randomly with replacement

from {êt}
(b) Run regression yt,b

∗ = c + a1yt
∗

1,b + ... + apyt
∗

p,b + et to get â∗
− 1 ,− ,b ..., â∗

p,b

(c) Invert the estimated AR process to get the estimates of impulse response ĉ∗j,b from a∗
1,b, ..., a

∗
p,b

4. sort ĉ∗j,b in ascending order ĉ∗j,(1) ≤ ... ≤ ĉ∗j,(B)

̂ ̂
5. Form α confidence interval.

There are at least three way’s of forming a confidence set:

1. Efron’s interval (percentile bootstrap): uses cj as a test statistics. The interval is [ĉ∗j,([Bα/2]), ĉ
∗
j,([B(1−α/2)])]

2. Hall’s interval (“turned around” bootstrap)

̂
: uses cj − cj as a test statistics. It employs the idea of

bias correction. The interval is a solution to inequalities
̂

ĉ∗j,([Bα/2]) − ĉj ≤ ĉj − cj ≤ ĉ∗j,([B(1−α/2)]) − cj

or [2ĉj − ĉ∗j,([B(1−α/2)]), 2ĉ cj − ∗̂
j,([Bα/2])]

̂

3. studentized bootstrap : uses t-statistics statistic c
t = ĉj− j
j s.e.(ĉj)

. The interval is a solution to inequalities

c c
t∗j,([Bα/2])

−≤ t
s.e.

ĵ j

(cj)
≤ ∗

j,([B(1−α/2)])

or [ĉj − tj
∗
,([B(1 α/2)])s.e.(ĉj), ĉj − t∗j,([Bα/2])s.e.(ĉj)]−

̂
Remark 6. The bootstrap is still an asymptotic procedure. One advantage of the bootstrap is its simplicity.
There is no need to apply the delta-method.
Remark 7. There are variations of the bootstrap that also work. For example, you could sample the errors
from a normal distribution with variance Ω.ˆ This would be called a parametric bootstrap because we’d be
relying on a parametric assumption to create our simulated samples.
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Impulse-response 5

Bootstrap-after-bootstrap Simulations show that bootstrap works for impulse responses somewhat bet-
ter than asymptotic (delta-method). This is due to final sample correction - remember that the dependence
between {aj} and {cj} is non-linear. However, the coverage of these intervals is still very far from ideal,
especially for very persistent processes. The main reason for that is aj are very biased estimates of aj . To
correct this a bootstrap-after-bootstrap was suggested.

̂
1. run regression yt = c + a1yt 1 + ... + apyt p + et to get c,̂ â1, ..., âp and residuals e− − t

2. Invert the estimated AR process to get the estimates of impulse response ĉj from

̂
â1, ..., âp

3. For b = 1..B

(a) Form yt,b
∗ = ĉ + â1yt

∗
1,b + ... + apy ,− −t

∗
p,b + e∗t,b where e∗t,b is sampled randomly with replacement

from {êt}
(b) Run regression yt,b

∗ = c + a1yt
∗

̂
1,b + ... + apyt

∗
p,b + e to− − t get a1

∗
,b, ..., a

∗
p,b

4. calculate bias corrected estimates of ˜ B
aj : a 1

j = 2

̂
âj − B

∑
b=1 â∗

j,b

̂

5. For b = 1..B

(a) Form ỹ ˜t,b
∗ = a1ỹt

∗
−1,b + ... +˜ ˜apyt

∗
p,b + et,b

∗ , where e∗t,b is sampled randomly with replacement from−
{êt}

(b) Run regression yt,b
∗ = c + a y

˜
1 t

∗
1,b + ... + apyt

∗ +− −p,b et to get a∗
1,b, ..., a

∗
p,b

(c) Invert the estimated

˜
AR pro

˜
cess to get the

˜
estimates of impulse

˜
resp

˜
onse ĉ∗j,b from

6.

ã∗
1,b, ..., ã

∗
p,b

Form α confidence interval.
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