14.384 Time Series Analysis, Fall 2007 Professor Anna Mikusheva Paul Schrimpf, scribe October 18, 2007

Lecture 16

Empirical Processes

Introduction

References: Hamilton ch 17, Chapters by Stock and Andrews in Handbook of Econometrics vol 4 Empirical process theory is used to study limit distributions under non-standard conditions. Applications include:

- 1. Unit root, cointegration and persistent regressors. For example if $y_t = \rho y_{t-1} + e_t$, with $\rho = 1$, then $T(\hat{\rho} 1)$ converges to some non-standard distribution
- 2. Structural breaks at unknown date (testing with nuisance parameters). For example, $y_t = \begin{cases} \mu + e_t & t \le \tau \\ \mu + k + e_t & t > \tau \end{cases}$.

Want to test H_0 : no break k = 0 with τ being unknown. A test statistic for this hypothesis is $S = \max_{\tau} |t_{\tau}|$ where t_{τ} is the t-statistic for testing k = 0 with the break at time τ . S will have a non-standard distribution.

- 3. Weak instruments & weak GMM.
- 4. Simulated GMM with non-differentiable objective function e.g. Berry & Pakes
- 5. Semi-parametrics

We will discuss 1 & 2. We will cover simulated GMM later.

Empirical Process Theory

Let x_t be a real-valued random $k \times 1$ vector. Consider some \mathbb{R}^n valued function $g_t(x_t, \tau)$ for $\tau \in \Theta$, where Θ is a subset of some metric space. Let

$$\xi_T(\tau) = \frac{1}{\sqrt{T}} \sum_{t=1}^T (g_t(x_t, \tau) - Eg_t(x_t, \tau))$$

 $\xi_T(\tau)$ is a random function; it maps each $\tau \in \Theta$ to an \mathbb{R}^n valued random variable. $\xi_T(\tau)$ is called an empirical process. Under very general conditions (some limited dependence and enough finite moments), standard arguments (like Central Limit Theorem) show that $\xi_T(\tau)$ converges point-wise, i.e. $\forall \tau_0 \in \Theta$, $\xi_T(\tau_0) \Rightarrow N(0, \sigma^2(\tau_0))$). Also, standard arguments imply that on a finite collection of points, $(\tau_1, ..., \tau_p)$,

$$\begin{bmatrix} \xi_T(\tau_1) \\ \vdots \\ \xi_T(\tau_p) \end{bmatrix} \Rightarrow N(0, \Sigma(\tau_1, ..., \tau_p))$$
(1)

We would like to generalize this sort of result so that we talk about the convergence of $\xi_T()$ as a random function in a functional space. For that we have to introduce a metric in a space of right-continuous functions.

We define a *metric* for functions on Θ as $d(b_1, b_2) = \sup_{\tau \in \Theta} |b_1(\tau) - b_2(\tau)|$. Let \mathcal{B} = be a space of bounded functions on Θ , and $\mathcal{U}(\mathcal{B})$ = be a class of uniformly continuous (wrt d()) bounded functionals from \mathcal{B} to \mathbb{R} .

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Definition 1. Weak convergence in $\mathcal{B}: \xi_T \Rightarrow \xi$ iff $\forall f \in \mathcal{U}(\mathcal{B})$ we have $Ef(\xi_T) \rightarrow Ef(\xi)$ as $T \rightarrow \infty$. **Definition 2.** ξ is stochastically equicontinuous if $\forall \epsilon > 0, \forall \eta > 0$, there exists $\delta > 0$ s.t.

$$\lim_{T \to \infty} P(\sup_{|\tau_1 - \tau_2| < \delta} |\xi(\tau_1) - \xi(\tau_2)| > \eta) < \epsilon$$

Theorem 3. Empirical Processes Theorem: If

1. Θ is bounded

- 2. there exists a finite-dimensional distribution convergence of ξ_T to ξ (as in (1))
- 3. $\{\xi_T\}$ are stochastically equicontinuous

then $\xi_T \to \xi$

Condition 2 is usually easy to check checked. Main difficulty is usually in checking condition 3. *Remark* 4. Stochastic equicontinuity is equivalent to:

$$\forall \{\delta_T\} : \delta_T \to 0 \qquad \sup_{|\tau_1 - \tau_2| < \delta_T} |\xi(\tau_1) - \xi(\tau_2)| \to^p 0$$

Theorem 5. Continuous Mapping Theorem: if $\xi_T \Rightarrow \xi$, then \forall continuous functionals, $f, f(\xi_T) \Rightarrow f(\xi)$

Functional Central Limit Theorem

Let ϵ_t be a martingale difference sequence $(i.e. \ E(\epsilon_t | \epsilon_{t-1}, ...) = 0 \ \forall t)$ with $E(\epsilon_t^2 | I_{t-1}) = \sigma^2$, $E\epsilon_t^4 < \infty$. Define

$$\xi_T(\tau) = \frac{1}{\sqrt{T}} \sum_{t=1}^{[T\tau]} \epsilon_t = \frac{1}{\sqrt{T}} \sum_{t=1}^T \mathbf{1}_{\{t \le [T\tau]\}} \epsilon_t = \frac{1}{\sqrt{T}} \sum_{t=1}^T g_t(\epsilon_t, \tau)$$

Consider some τ_0 :

$$\xi_T(\tau_0) = \frac{\sqrt{T\tau_0}}{\sqrt{T}} \frac{1}{\sqrt{T\tau_0}} \sum_{t=1}^{[T\tau_0]} \epsilon_t$$

Standard Central Limit Theorem implies that $\frac{1}{\sqrt{T\tau_0}}\sum_{t=1}^{[T\tau_0]}\epsilon_t \Rightarrow N(0,\sigma^2)$, so

 $\xi_T(\tau_0) \Rightarrow N(0, \sigma^2 \tau_0)$

Similarly, if we consider the joint distribution of $\xi_T(\tau_0)$ and $\xi_T(\tau_1) - \xi_T(\tau_0)$. These will be two non-overlappping sums of ϵ_t , so we have:

$$\begin{bmatrix} \xi_T(\tau_0) \\ \xi_T(\tau_1) - \xi_T(\tau_0) \end{bmatrix} \Rightarrow N\left(0, \begin{bmatrix} \tau_0 \sigma^2 & 0 \\ 0 & (\tau_1 - \tau_0)\sigma^2 \end{bmatrix}\right)$$

We can generalize this to any finite collection $\{\tau_i\}$.

Definition 6. Brownian motion or Weiner process is a stochastic process, W(), such that

- 1. W(0) = 0
- 2. For $0 \le t_1 < ... < t_k \le 1$, the increments, $W(t_2) W(t_1), ..., W(t_k) W(t_{k-1})$ are independent Gaussian with $W(t) W(s) \sim N(0, t-s)$ for t > s
- 3. W(t) is almost surely continuous

The Functional Central Limit Theorem implies $\xi_T \Rightarrow \sigma W$. (Surely, one has to prove stochastic equicontinuity, which happens to be true here).

Unit Root

Let $y_t = \rho y_{t-1} + \epsilon_t$ and $\rho = 1$ (unit root process). The asymptotic behavior of y_t are very different from that of a stationary time series (or just autoregressive processes with $|\rho| < 1$). For example, $\xi_T(\tau) = \frac{1}{\sqrt{T}} y_{[T\tau]} \Rightarrow \sigma W(\tau)$ as a stochastic processes, while for $x_t = \rho x_{t-1} + e_t$, $|\rho| < 1$, we have $\frac{1}{\sqrt{T}} x_{[T\tau]} \to^p 0$. Another observation: $\bar{x} \xrightarrow{p} Ex_t = 0$ for a stationary process, while for a random walk, \bar{y}/\sqrt{T} has a non-degenerate asymptotic distribution:

$$\begin{split} \frac{1}{T^{3/2}} \sum_{t=1}^T y_t = & \frac{1}{T} \sum_{t=1}^T \frac{y_t}{\sqrt{T}} \\ = & \frac{1}{T} \sum_{t=1}^T \xi_T(t/T) \\ = & \int_0^1 \xi_T(s) ds \Rightarrow \sigma \int_0^1 W(t) dt \end{split}$$

where we used the continuous mapping theorem in the last line. Integration is a continuous functional. Similar reasoning shows that:

$$T^{-1-k/2} \sum_{t=1}^{T} y_t^k \Rightarrow \sigma^k \int_0^1 W^k(s) ds \tag{2}$$

Now, let us consider a distribution of OLS estimates in an auto-regression (regression of y_t on y_{t-1}). In the stationary case, we have:

$$\sqrt{T}(\hat{\rho} - \rho) = \frac{\frac{1}{\sqrt{T}} \sum x_{t-1} \epsilon_t}{\sum x_{t-1}^2} \Rightarrow \frac{N(0, \frac{\sigma^4}{1 - \rho^2})}{\sigma^2 / (1 - \rho^2)} = N(0, 1 - \rho^2)$$

Now let's consider a non-stationary case. The asymptotic distribution of $\hat{\rho} - 1$ will be given by the distribution of $\frac{T^2 \sum y_{t-1}\epsilon_t}{T^2 \sum y_{t-1}y_{t-1}}$. We write T^2 because we're not yet sure of the rate of convergence. The rate will become clear after working with the expression a little bit. Let's examine the numerator and denominator of this expression separately. For the numerator,

$$\sum_{t=1}^{T} y_{t-1} \epsilon_t = \sum_{t=1}^{T} \epsilon_t (\epsilon_1 + \dots + \epsilon_{t-1}) = \sum_{t=1,s < t}^{T} \epsilon_t \epsilon_s$$
$$= \frac{1}{2} y_T^2 - \frac{1}{2} \sum \epsilon_t^2$$

since,

$$y_T^2 = (\sum_{t=1}^T \epsilon_t)^2 = \sum_{t=1}^T \epsilon_t^2 + 2\sum_{t=1,s$$

If we scale the numerator by 1/T, then we have:

$$\begin{split} \frac{1}{T} \sum y_{t-1} \epsilon_t &= \frac{1}{2} (\frac{1}{\sqrt{T}} y_T)^2 - \frac{1}{2} \frac{1}{T} \sum \epsilon_t^2 \\ &= \frac{1}{2} (\xi_T(1) - \hat{\sigma}^2) \\ &\Rightarrow \frac{1}{2} (W^2(1) \sigma^2 - \sigma^2) = \frac{1}{2} \sigma^2 (W^2(1) - 1) \end{split}$$

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

If we scale the denominator by $1/T^2$, then we know from (2) above that $\frac{1}{T^2} \sum y_{t-1}^2 \Rightarrow \int_0^1 W(s)^2 ds$. Thus,

$$T(\hat{\rho} - 1) \Rightarrow \frac{\frac{1}{2}(W^2(1) - 1)}{\int_0^1 W(s)^2 ds}$$

Using Itō's lemma, we can modify this slightly.

Lemma 7. Itō's lemma Suppose we have a diffusion process, S_s

$$S_s = \int_0^s a_t dW(t) + \int_0^s b_t dt$$

or, informally,

$$dS = a_t dW + b_t dt$$

Let f be a three times differentiable function, then df(S) is

$$df(S) = f'(a_t dW + b_t dt) + \frac{1}{2}f''(a_t^2 dt)$$

which means that

$$f(S_s) = \int_0^s f'a_t dW(t) + \int_0^s (f'b_t + \frac{1}{2}f''a^2)dt$$

In our application, $S = W = \int dw$, $f(x) = x^2$, f'(x) = 2x, and f''(x) = 2. Applying Itō's lemma we have:

$$d(W^2(t)) = 2wdw + \frac{1}{2}2dt$$

This means that

$$W^{2}(1) = \int_{0}^{1} dW^{2}(t) = 2 \int_{0}^{1} W(s) dW(s) + \int_{0}^{1} ds$$

 $\mathbf{so},$

$$\int_0^1 W(s)dW(s) = \frac{1}{2}(W^2(1) - 1)$$

Thus, we have:

$$T(\hat{\rho}-1) \Rightarrow \frac{\frac{1}{2}(W^2(1)-1)}{\int_0^1 W(s)^2 ds} = \frac{\int_0^1 W(s) dW(s)}{\int_0^1 W^2(s) ds}$$

Notice that:

$$\frac{1}{T} \sum_{t=1}^{T} y_{t-1} \epsilon_t = \sum_{t=1}^{T} \frac{y_{t-1}}{\sqrt{T}} \frac{\Delta y_t}{\sqrt{T}}$$
$$= \int_0^1 \xi_T(s) d\xi_T(s)$$
$$\Rightarrow \int_0^1 W(s) dW(s)$$

However, the convergence in the last line does not follow from the continuous mapping theorem. Stochastic integration is not a continuous functional, *i.e.* if $f_n \to f$, in the uniform metric, d(), and g is bounded, then it does not necessarily imply that $\int g df_n \to \int g df$. Generally, showing convergence of stochastic integrals is a more delicate task. Nonetheless, it holds in our case, as we have just shown.

Cite as: Anna Mikusheva, course materials for 14.384 Time Series Analysis, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

MIT OpenCourseWare http://ocw.mit.edu

14.384 Time Series Analysis Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.