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Lecture

More Non-Stationarity

We have seen that there’s a discrete difference between stationarity and non-stationarity. When we have
a non-stationary process, limiting distributions are quite different from in the stationary case. For example,
let εt be a martingale difference sequence, with E(ε2t |It 1) = 1, Eε4t < k < ∞. Then ξ− T (τ) = √1 [τT ]

T t=1 εt ⇒
W (·). Then there is a sort of discontinuity in the limiting distribution of an AR(1) at ρ = 1:

Unit Root Stationary

∑

Process yt = yt−1 +∫ εt x√ t = ρxt 1 + εt

Limiting distribution of (ˆ− 1) ⇒ WdW
−

ρ T ρ
W 2 T

dt
(ρ̂− ρ) ⇒ N(0, 1− ρ2)

Limiting distribution of t t

∫

⇒ √
∫

WdW

W 2
t

dt
⇒ N(0, 1)

In finite samples, the distribution of the

∫

t-stat is continuous in ρ ∈ [0, 1]. However, the limit distribution is
discontinuous at ρ = 1. This must mean that the convergence is not uniform. In particular, the convergence
of the t-stat to a normal distribution is slower, the closer ρ is to 1. Thus, in small samples, when ρ is close
to 1, the normal distribution badly approximates the unknown finite sample distribution of the t-statistic.
A more precise statement is that we have pointwise convergence, i.e.

sup |P (t(ρ, T ) ≤ x)− Φ(x) 0
x

| → ∀ρ < 1

but not uniform convergence, i.e.

sup sup |P (t(ρ, T ) x
ρ∈(0,1) x

≤ )− Φ(x)| 6→ 0

where Φ(·) is the normal cdf. It means that the confidence set based on normal approximation of t-statistic
will have bad coverage for values of ρ very close to the unit root. Since we don’t know the true value of ρ
for sure we are in danger to get a deceptive confidence set.

Just how bad is the normal approximation? If you construct a 95% confidence interval based on a normal
approximation, then without a constant the coverage is 90%, with a constant 70%, and with a linear treand
35%.

Local to Unity Asymptotics

Local to unity asymptotics is one way to try to construct a better approximation. Let:

xt =ρxt 1 + εt , t = 1, ..., T−
ρ = exp(c/T ) ≈ 1 + c/T , c < 0

This model is not meant to be a literal way of describing the world. It is just a device for building a better
approximating limiting distribution. It can be shown that:

x√[τT ]
c

T
⇒ = (τ) (1)

where =c(τ) is an Ornstein-Ulenbeck process.
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Definition 1. Ornstein-Ulenbeck process: = ( ) =
∫ τ − ( ), so = ( ) ∼ (0

2τc

τ ec(τ s)
c dW s c τ N , e

0
−1

2c )

We will not prove (1), but we will sketch the idea. First, observe that

t
x√t ε

=
∑

j
ρt−j

T
j=1

√
T

t

=
∑

ec(t/T−j/T ) εj

j=1

√
T

Defining ξT (τ) as usual we have:

t
x√t =

∑
ec(t/T−j/T )∆ξT (j/T )

T
j=1

then taking τ = t/T we have:

x τ

√[τT ] = e
T

∫
c(τ−s)dξT (s)

0

Finally, assuming convergence of the stochastic integral (which we could prove if we took care of some
technical details), gives:

x√[τT ] ⇒
∫ τ

ec(τ−s)dW (s)
T 0

≡ =c(τ)

Using this result, the limiting distribution of OLS will be (omitting several technical steps):

T (ρ̂− c(s)dW (s)
ρ) ⇒

∫ =∫ =2

∫c(s)ds

c(s)dW (s)
t c
ρ=ec/T ⇒ t =

=
=2

c(s)ds

If c = 0, tc is a Dickey-Fuller distribution. If c

√∫

→ −∞, the tc ⇒ N(0, 1). This was shown by Phillips (1987).
The convergence to this distribution is uniform (Mikusheva (2007)),

sup sup |P (t(ρ, T ) x
ρ [0,1] x

≤ x)− P (tc ≤ |ρ = ec/T )| → 0 as T →∞
∈

Figure 1 illustrates this convergence

Confidence Sets

We usually construct confidence sets by inverting a test. Consider testing H0 : ρ = ρ0 vs ρ = ρ0. We
construct a confidence set as C(x) = {ρ0 : hypothesis accepted}. So, for example in OLS, we take t = ρ̂−ρ

s.e.(ρ̂)

and

ρ̂ ρ
C(x) ={ρ0 : −1.96

−≤ ≤ 1.96
se(ρ̂)

}

=[ρ̂− 1.96se(ρ̂), ρ̂ + 1.96se(ρ̂)]

To construct confidence sets using local to unity asymptotics, we do the exact same thing, except the quantiles
of our limiting distribution depend on ρ0, i.e.

ρ̂
C(x) = ρ0 : q1(ρ0, T )

− ρ{ ≤
se(ρ̂)

≤ q1(ρ0, T )}
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Figure 1: Local to Unity Asymptotics

where q1(ρ0, T ) and q2(ρ0, T ) are quantiles of tc for c = T log ρ0.
This approach was developed by Stock (1991). It only works when we have an AR(1) with no auto-

correlation. Some correction could be done in AR(p) to construct a confidence set for the largest autoregres-
sive root.

Grid Bootstrap

This was an approach developed by Hansen (1999). It has a local to unity interpretation. Suppose

p−1

xt = ρxt 1 +−
∑

βj∆xt + ε−j t

j=1

where ρ will be the sum of AR coefficients; it is a measure of persistence. For the grid bootstrap we:

• Choose grid on [0, 1]

• Test H0 : ρ = ρ0 vs ρ = ρ0 for each point on grid

1. Regress xt on xt 1 and ∆xt 1, ...∆x− − t−p+1 to get ρ̂, tρ0 -stat

2. Regress xt − ρ0xt 1 on ∆x− t−1, ...∆xt−p+1 to get β̂j

3. Bootstrap:

– ε∗t from residuals of step 1
– Form x∗t = ρ0x

∗
t−1 +

∑
β̂j∆xt j + εt

∗ do OLS as in step 1−
– Repeat, use quantiles of bootstrapped t-stats as critical values to form test

• All ρ0 for which the hypothesis is accepted form a confidence set

Bayesian Perspective

From a Bayesian point of view, there is nothing special about unit roots if one assumes a flat prior. Sims
and Uhlig (1991) argue that all the attention paid to unit roots is non-productive. Phillips (1991) has a
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reply that looks more carefully at the idea of uninformative priors. Sims and Uhlig (1991) had put a uniform
prior on [0, 1]. Phillips points out that this puts all weight on the stationary case. He argues that a uniform
prior is not necessarily uninformative, and point out that a Jeffreys prior would put much more weight
(asymptotically almost unity weight) on the non-stationary case. In this case Bayesian conclusions look
more like frequentists’. There is a Journal of Applied Econometrics issue about this debate.
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