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Lecture 4

Spectrum

Review

Recall the spectrum is

∞
S(ω) =

j=

∑
e−iωjγj

−∞

note that γj = γ j , so S(ω) is real valued and−
∞

S(ω) =γ0 + 2
∑

γj cos(jω).
j=1

The last equation implies that S is a symmetric function: S(ω) = S(−ω), and periodic S(ω) = S(ω + 2π).
That is, it is enough to depict S on the interval [0, π]. One can also prove that since γj are autocovariances
we will have S(ω) ≥ 0 for all ω.

Recall that we can recover the covariances from the spectrum using the inverse Fourier transform

1
γj =

∫ π

eiωjS(ω)dω
2π −π

The ratio S(ω)
2π is often called spectral density, because the “cdf” F (ω) = ω S(λ)dλ−π 2π defined out of it has

the following property:
π

∫

γ0 =
∫

dF (ω)

∫ −π

π

γj = eiωjdF (ω)
−π

Cramer’s Representation

The spectrum will lead us to a new way of representing a time series. We will sketch an argument to show
this.

Let us consider two random variables A and B such that EA = EB = 0, EA2 = EB2 = σ2, and EAB =
0. Let us define a complex-valued random variable Z = A + iB = Reiφ with ER2 = EA2 + EB2 = 2σ2.
Now let us consider a time series

Zeiλt + Ze−iλt Rei(λt+φ) + Re−i(λt+φ)

xt = = = R cos(tλ + φ).
2 2

The process xt is a sinusoid with the random amplitude R, period 2π
λ and a random phase φ. Another way

of writing xt is
xt = A cos(λt)−B sin(λt)
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Cramer’s Representation 2

We can notice that xt is a weakly stationary process with the covariance structure

γ = Ex2 = E(A cos(λt)−B sin(λt))2 = σ2
0 t

γk = Extxt+k = E [A cos(λt)−B sin(λt))(A cos(λ(t + k))−B sin(λ(t + k))] =

eiλk
2 2 2

(
+ e−iλk

= σ (cos(λ(t + k)) cos(λt) + sin(λ(t + k)) sin(λt)) = σ cos(λk) = σ
2

)

In the first line we used cos2(x) + sin2(x) = 1, and in the third : cos(x + y) = cos(x) cos(y)− sin(x) sin(y).
Now let’s compare the last to the formula:

γj =
∫ π

eiωjdF (ω)
−π

We can see that F has two mass points: it puts weight
2σ
2 at λ and −λ.

Let λj ∈ [0, π] be evenly spaced fixed points with j = 1, .., n, and consider a process
(

A(λj)
B(λj)

)
∼ N

((
0
0

)
,

(
σ2

j 0
0 σ2

j

))
.

Assume that A and B at different λj ’s are independent. Consider Z(λj) = A(λj) + iB(λj) = Rje
iφj . We

can show the following:

1. EZ(λj) = 0

2. Var(Z(λj)) = EZ(λj)Z(λj) = ER2
j = σ2

j

3. EZ(λj)Z(λk) = 0 for j = k

Remark 1. I want to remind you that for two complex valued random variables ξ and η the covariance is
defined as cov(ξ, η) = E (ξ − Eξ)(η − Eη) .

Remark 2. Z is a discrete

[

orthogonal process.

]

Suppose

∑n Z(λ )eitλj
j +

xt =
Z(λj)e−itλj

2
j=1

n

=
∑

cos(λjt)A(λj)
j

− sin(λjt)B(λj)
=1

Also
∑n

eiλjk + e−iλjk

γ = E[x kx ] = σ2
k t+ t j 2

j=1

=
∫ π

eikωdF̃ (ω)
−π

where F̃ (ω) puts weight σj/2 at points −λj and λj .
Let’s double the number of points naming them ωj by considering λj and their negatives. That is

2

{ωj} = {λj}∪{−λj}. Let ˜ σ
F (ω) =

∑
j

ωj<ω 2 is a the cdf of a discrete process. Assume that we define Z(ωj)

for negative argument as Z(ωj) = Z(−ωj). Assume ỹ(ω) = ω <ω Z(ωj
j

)/2, so that

∑n (
xt =

Z λj)
eitλj =

∑

ω)
2

∫ π

eitωdỹ(
−πj=1

where dỹ(λj) = Z(λj)
2 , and Var(dỹ(λj)) = dF̃ (ω).
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Filtering 3

Remark 3. We want to let n →∞, but then we need to use Ito integrals, which we haven’t covered.

Definition 4. A mean zero orthogonal increment process, y(λ), associates with each λ [ π, π] a random
variable y(λ) such that E[y(λ)2

∈ −
] is finite for all λ andE[y(λ4 − λ3)y(λ2 − λ1)] = 0 for all λ1 ≤ λ2 ≤ λ3 ≤ λ4

Remark 5. Brownian motion is an orthogonal increment process, but definitley not the only orthogonal
increment process.

Theorem 6 (Cramer’s representation). Suppose xt is stationary with zero mean and spectrum S(ω). Then
∃ a right-continuous orthogonal increment process, y(λ) (with λ ∈ [−π, π]) such that:

1. xt =
∫ π

eitλdy−π
(λ) with probability 1

2. E| Sy(λ)− y(− λ
π)|2 = (ω)dω−π 2π

Remark 7. dy(λ) will satisfy

∫

the continuous analogs of properties 1-4 given for Z(λ) above.

Remark 8. This means we can decompose xt as a sum of processes at different frequencies. The integral
above is a sum across all frequencies. dy(λ) is a random weight for each frequency. We are interested
in the existence of this decomposition because it means that we can sensibly talk about movements that
happen at different frequencies, and try to isolate the frequencies that we’re interested in. For example, to
study business cycles, we might want to remove low frequencies (trends) and high frequencies (seasonality,
measurement error). We do this to identify recessions. It can also be useful for gathering stylized facts and
comparing them with theory. For example, we might think money is neutral in the long run, but not the
short run. We could look at low and high frequency ω movements in money and GDP to look for evidence
of this.

Filtering

Given the above results, we can think about how to remove frequencies from a process.

Definition 9. We apply a linear filter, B(L) to xt as B(L)xt = yt

Recall that Sy(ω) = |B(eiω)|2Sx(ω). We can use this relationship to study how a given filter affects
various frequencies.

Isolating the business cylcle

Suppose t = 1, .., T in quarters. Following the NBER, define the business cycle as the component with a
period from 1.5 to 8 years (6-32 quarters). Then a period of 6 corresponds to the frequency λ = 2π

6 = π
3 and

32 corresponds to λ = 2π
32 = π

16 . We want to decompose xt = bt + τt + et, a business cycle bt, trend τt, and
seasonal et. To isolate bt, an ideal filter would have

iω 2

{
1 λ ∈ [ π , π

|B∗(e )| = 16 3 ]
.

0 otherwise

This would select the desired range of frequencies. The problem is that there is no finite order polynomial
that accomplishes this.

The ideal filter has an inverse Fourier transform, B∗(eiω) = ∞
β iω

j
∗e− j , with infintely many β∗−∞ j = 0.

We can’t use this because our data is finite. One alternative is to just set βj
∗ = 0 for |j| > J .

One of the possible conditions we might impose on a filter is

∑

that it kills zero-frequencies, B(1) = 0. It
implies that we are removing a deterministic trend. Then even if we have non-stationary time-series, the
filtered series will be stationary.
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Isolating the business cylcle 4

Figure 1: Baxter King (1999) Figure 2

The Baxter-King approximation to the ideal filter is

βj =

{
βj
∗ + θ |j| < J

,
0 otherwise

where θ is chosen to achieve the condition B(1) = 0. See figure 1 (from Baxter, M. and King, R., (1999),
.Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series., Review of Economics
and Statistics, 81, 575-593) for an illustration of how well this works. With J = 16, the truncated filter is
quite close to the ideal one. In fact, what Baxter-King filter does - it solves

{
min 1 π

{b−k,...,bk
b eiω b eiω} 2π

∫ ‖ )−π
( − ∗( )‖2dω

s.t b∗(1) = 0

A problem from problem set 1 may give an idea why it can be good.
In addition to the band-pass filter just described, Baxter-King suggest a high-pass filter that removes

only a trend and keeps high frequence, and a low-pass filter that leaves only low frequencies.

Remark 10. This is far from the only approach to isolating the business cycle. The simplest approach would
be to just detrend GDP. The Hodrick-Prescott filter is another approach.
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(A) Truncated filter K = 4
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(B) Truncated filter K = 8
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(C) Truncated filter K = 12
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(D) Truncated filter K = 16

Constrained approximate high-pass filters
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Words of caution 5

Remark 11. We developed our theory for stationary processes, but now we’re talking about removing trends
from non-stationary data. Once we apply these filters, we end up with a stationary series.

Definition 12. Hodrick-Prescott Filter: Assume GDP is xt = ct + τt, a cycle ct plus a trend τt. We choose
ct and τt by solving

min{
∑

(x τ 2
t − τt)2 + λ(τt+1 − 2 t + τt

τ
−1)

t

}

where λ controls how much we penalize the trend for non-smoothness (τt+1−2τt+τt 1 is like a 2nd derivative).−
For quarterly data, HP suggests λ = 1600.

Words of caution

• Filters are two-sided : they average over today’s, yesterday’s and tomorrow’s data. If we’re interested
in whether one series leads (or perhaps causes) another we may mess up the relationship by filtering.

• Filters should be applied to both data and models: if we’re comparing simulations from a model to the
data, we should apply the same filter to both.

• HP can generate spurious cycles: Copley and Nason (1995) generated random-walk data, applied HP,
and found cycles. BK might also generate spurious cycles. In general, we know the theory of these
filters, but we don’t know their stochastic properties so well.
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