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Empirical Process Theory 

Let xt be a real-valued random k × 1 vector. Consider some �n valued function gt(xt, τ) for τ ∈ Θ, where 
Θ is a subset of some metric space. 

Remark 1. In time series applications, generally, Θ = [0, 1] 

Let 

1 
T  

ξT (τ ) = √ (gt(xt, τ) − Egt(xt, τ)) 
�

T 
t=1 

ξT (τ ) is a random function; it maps each τ ∈ Θ to an �n valued random variable. ξT (τ) is called an 
empirical process. Under very general conditions, standard arguments show that ξT (τ) converges pointwise, 
i.e. ∀τ0 ∈ Θ, ξT (τ0) ⇒ N(0, σ2(τ0)). Also, standard arguments imply that on a finite collection of points, 
(τ1, ..., τp), ⎡ ⎤ 

ξT (τ1) ⎢ . ⎥ ⎣ .. ⎦ N(0, Σ(τ1, ..., τp)) (1)⇒ 

ξT (τp) 

We would like to generalize this sort of result so that we talk about the convergence of ξT (). 

Example 2. Suppose you want to test whether xt has cdf F (x). The cdf of xt can be estimated by its 
empirical cdf, 

F̂T (x) = 
1 � 

1(xt ≤ x)
T 

Two possible statistics for testing whether F̂n(x) equals F (x) are the Kolmogorov-Smrinov statistic, 

sup 
√

n(F̂n(x) − F (x)) 
x 

and the Cramer-von Mises statistic � 
n (F̂n(x) − F (x))2dF (x) 

This fits into the setup above with 

1 �� � 
ξT (τ ) = √

T 
1(xt ≤ τ) − F (τ ) 

. For independent xt, finite dimensional covergence is easy to verify and for any τ1, τ2 we have � � � � �� 
ξT (τ1) F (τ1)(1 − F (τ1)) F (τ1) ∧ F (τ2) − F (τ1)F (τ2) 
ξT (τ2) 

⇒ N 0,
F (τ1) ∧ F (τ2) − F (τ1)F (τ2) F (τ2)(1 − F (τ2)) 

Definition 3. We define a metric for functions on Θ as d(b1, b2) = supτ∈Θ |b1(τ ) − b2(τ)| 
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Definition 4. B = bounded functions on Θ 

Definition 5. U(B) = class of uniformly continuous (wrt d()) bounded functionals from B to � 

Example 6. Examples of elements of U(B) include: 

       � 
• Evaluation at a point: fτ0 (ξ) = ξ(τ0)

• Integration: f(ξ) = 
Θ ξ(τ)dτ 

Definition 7. convergence in B: ξT ⇒ ξ iff ∀f ∈ U(B) we have Ef(ξT ) → Ef(ξ) 

Remark 8. This definition of convergence implies pointwise convergence. If ξT ξ, then by definition for ⇒
each τ0 and k, EξT (τ0)k Eξ(τ0)k . Then, if the distribution of ξ(τ0) is completely determined by its →
moments (as it is if, for example, ξ(τ0) is normal or has bounded support), it follows that ξT (τ0) ξ(τ0).⇒ 

Definition 9. ξ is stochastically equicontinuous if ∀� > 0, ∀η > 0, there exists δ > 0 s.t. 

lim P ( sup |ξT (τ1) − ξT (τ2)| > η) < � 
T →∞ |τ1−τ2|<δ 

Theorem 10. Functional Central Limit Theorem: If 

1. Θ is bounded 

2. there exists a finite-dimensional distribution convergence of ξT to ξ (as in (1)) 

3. {ξT } are stochastically equicontinuous 

then ξT ξ⇒ 

Remark 11. Condition 1 can be removed. Without it, condition 3 must be strengthened to: ∀ �, η > 0 there 
exists a partition of Θ into finitely many sets, Θ1, ...Θk such that 

lim sup P (max sup ξT (τ1) − ξT (τ2) > η) < � 
i τ1,τ2∈Θi 

| |
T →∞ 

Proving the theorem involves constructing a metric on Θ such that Θ is bounded with respect to that metric, 
so condition 1 is really a consequence of this stronger version of condition 3. 

Remark 12. Condition 2 can be checked. Condition 3 is difficult to check, but lots of work has been done to 
derive simpler sufficient conditions. See Andrews (1994 HoE) for some sufficient conditions. Necessary and 
sufficient conditions for stochastic equicontinuity are not known. However, very general sufficient conditions 
are known. Classes of functions for which the functional CLT holds are called P-Donsker. 

Sufficient Conditions for Stochastic Equicontinuity 

This is largely tangential to what we will do in class. 

Definition 13. A class of functions, G, is P-Donsker if for every g ∈ G, 

1 �� � 
√

T
g(xt, ·) − E[g(xt, ·)] ⇒ ξ 

where ξ ∈ �∞(G) 

In order for a class of functions to be P-Donsker, stochastic equicontinuity requires that the function 
class not be too complex. One way of measuring the complexity of a function class is by bracketing numbers. 
An � bracket in L2, [l, u] is the set of all functions, f , such that l ≤ f ≤ u pointwise with E[|l − u|2]1/2 < �. 
The � bracketing number written as N[](�, G) is the minimal number of � brackets needed to cover G. An 
important sufficient condition for a class to be P-Donsker is the following: 
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Theorem 14. Every class G of measurable functions with � 1 � 
log N[](�, )d� < 

0 
G ∞

is P-Donsker. 1 

� 

Although this condition looks strange and difficult, it can be verified in a number of interesting situations. 

Example 15. Classes that are P-Donsker include 

•	 Distribution functions: using brackets of the form [1(x < xi), 1(x < xi+1)] with F (xi+1) − F (xi) < � 
we can cover G with C/�2 brackets, so � 1 � � 1 � 

log N[](�, G)d� ≤ log(c/�2)d� = log(c) + 1 
0 0 

is finite. 

• Parametric Classes: if G = {gθ : θ ∈ Θ ⊂ Rk} with Θ bounded, and a Lipschitz condition holds: 

|gθ1 (x) − gθ2 (x)| ≤ m(x)||θ1 − θ2||


with E[m(x)2] < ∞.


Smooth functions from Rd R with uniformly bounded derivates of order up to α > d/2
•	 → 

Another way of characterizing complexity is through uniform covering numbers and uniform entropy 
integrals, but I am not going to say anything about it here. 

Continuous Mapping Theorem 

The following theorem is important for making the functional central limit theorem useful.


Theorem 16. Continuous Mapping Theorem: if ξT ⇒ ξ, then ∀ continuous functionals, f , f(ξT ) ⇒ f(ξ)


Example 17. We can use the continuous mapping theorem to get the distribution of the Kolmogorov-Smirnov

and Cramer-von Mises statistics. Both: supτ ξ(τ) and ξ(τ)2dF (τ ) are continuous functionals, so 

sup 
√

n(F̂n(x) − F (x)) d sup ξ(x) 
x 

→ 
x 

and � � 
n (F̂n(x) − F (x))2dF (x) d 

ξ(x)2dF (x)→ 

where� ξ(x) is a Brownian bridge, i.e. Gaussian with covariance function as above. We can simulate supx ξ(x) 
and ξ(x)2dF (x) to find critical values for hypothesis tests. 

1This theorem definitely holds for iid data. It might need to be modified for dependent data (e.g. the form of the integral 
depends on mixing coefficients), but I’m not certain. 
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Random Walk Asymptotics 

In lecture 12, we saw that if yt is a random walk and we estimate an AR(1), then 

 
1 
2 (W 2(1)  1) 

T (ρ̂ − 1) ⇒  1 

−
= 

W (s)2ds 
0

� 1 
W 

0
(s)dW (s)

 1
W 2(s)ds

0 

� 

� � 

= � � � 

� �


� �
It is important to understand how we derived these expressions because, unlike in the stationary case, small 
changes to the estimated model can greatly alter the asymptotic distribution. For example, suppose we 
estimate an AR(1) with a constant, so we estimate, 

yt = α + ρyt−1 + ut 

Let β = [α ρ]� = [0 1]� and β̂ be the OLS estimate. We know that: � � � � �−1 � � � 
α̂− α 

= � T � yt
2
−1 � ut (2)

ρ̂− ρ yt−1 yt−1 yt−1ut 

To find the asymptotic distribution, we need to examine each of the sums, determine appropriate scaling 
factors, and write down what they converge to. We’ve already seen each of these sums in lecture 12, so I 
won’t rewrite the steps here, but recall that 

T � 11 � 
yt ⇒σ W (t)dt 

T 3/2 
t=1 0 

T � 1 

T −2 yt 
2 σ2 W 2(s)ds⇒

t=1 0 

1 � 
√

T
ut ⇒σW (1) 

1 � σ 
yt−1ut ⇒ (W 2(1) − σ2)

T 2 

These results suggest scalling β̂ by 
T 1/2 0 to arrive at a nondegenerate asymptotic distribution, i.e.

0 T � 
T 1/2 

� � � �� 
T 1/2 

� � � � � 
T 1/2 

��−1 � 
T 1/2 

� � � � 
0 α̂− α 0 � T � yt−1 0 0 � ut= 

0 T ρ̂− ρ 0 T yt−1 yt
2 
−1 0 T 0 T yt−1ut � � � � � 

1 T −3/2 yt−1 
−1 � 

T −1/2 ut 

T −3/2 yt−1 T −2 yt
2 
−1 T −1 yt−1ut � 

T −1/2(α̂ − α) 
� � 

σ 0 
� � 

1 
� 

W (s)ds 
�−1 � 

W (1) 
�


T −1(ρ̂ − ρ) 
⇒ 0 1 W (s)ds W (s)2ds 2

1 (W (1)2 − 1) 

From which, we see that neither α̂ nor ρ̂ are asymptotically normal. Also, α̂ converges at the usual 1/
√

T 
rate, but ρ̂ converges at rate 1/T . 

with Drift 

Now, let’s consider another modification of the model. Suppose that yt is a random walk with drift, yt = 
yt−1 + α + et. As above, let’s assume we estimate by OLS an AR(1) with a constant. As above we need to 
analyze each of the sums in the matrices in (2). We cannot just use the results from lecture 12 because now 
the process for yt is different. 
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� 
• yt−1: � �  

yt 1 = (α(t − 1) + y +− 0  

 

�
es) 

t s<t 
 

=( α(t  1)) + Ty0 + ξT ((t  1)/T ) 
� �

� 

� � 

� 

� 

� � � 

� � � 

� � 

� � � �

− −
t t 

For αt to have a finite limit, we must normalize it by T −2 . We know that T −2Ty0 0, and �t � � � 
→ 

T −2 ξT ((t − 1)/T ) 0 (since T −3/2 ξT ((t − 1)/T ) = 1 T −1/2 ξT ((t−1)/T ) W (s)ds). There-T� 
→ � 

√
T 

⇒ 

fore, T −2 yt−1 → lim T −2 α(t − 1) = α/2. 

• yt
2 
−1: identical reasoning shows that we must normalize by T −3 and yt

2 
−1 → α2/3 

et: is unchanged, σW (1)• → 

• yt−1et: 

yt−1et = ((t − 1)α + y0 + es)et 

s<t � � 1 � 
= et(t − 1)α + ety0 + 

2
(yT 

2 − e 2)t 

The first term, et(t − 1)α is Op(T 3/2), so we must normalize by at least T −3/2 . ety0 is Op(T 1/2) 
and yT 

2 − et 
2 is Op(T ), so they vanish. This leaves, 

T −3/2 yt−1et ⇒T −3/2 et(t − 1)α ⇒ N(0, α2/3) 

Furthermore, jointly we have: � � � � � 
T −1/2 et 1 α/2


T −3/2 � 
yt−1et 

⇒ N(0, σ2 

α/2 α2/3 )


Combining these results, we see that 

T 1/2(α̂ − α) 1 α/2 
−1


T 3/2(ρ̂ − ρ) 
⇒ N(0, σ2 

α/2 α2/3 )


Thus, we obtain asymptotic normality when we estimate a random walk with drift. Also, the asymptotic 
variance matrix is the same as standard OLS. However, ρ̂ converges at a faster rate than usual. 
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