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More Empirical Process Theory 

This section of notes, especially the subsection on stochastic integrals are based on http://cscs.umich. 
edu/~crshalizi/weblog/472.html. 

Convergence of Random Walks 
1 [τT ] 

� 

We never did formally show the weak convergence of 
�

to a Brownian motion. Let’s fill that hole √
T t=1 

now. Remember the functional central limit theorem. 

Theorem 1. Functional Central Limit Theorem: If 

1. there exists a finite-dimensional distribution convergence of ξT to ξ (as in (??)) 

2. ∀ ε, η > 0 there exists a partition of Θ into finitely many sets, Θ1, ...Θk such that 

lim sup P (max sup ξT (τ1) − ξT (τ2) > η) < ε 
T →∞ i τ1,τ2∈Θi 

| | 

then ξT ξ⇒ 

Finite dimensional convergence follows from a standard central limit theorem. We just need to verify the 
second condition, stochastic equicontinuity. It is not very hard to do this directly. Θ = [0, 1] is compact, so 
we can choose our partition to be a collection of intervals of length δ. This gives 

P (max sup ξT (τ1) − ξT (τ2) > η) ≤P ( sup ξT (τ1) − ξT (τ2) > η)
i τ1,τ2∈Θi 

| | 
|τ1−τ2|<δ 

| | 

1 
[(τ +δ)T ] 

≤P ( sup �t ) 
τ ∈[0,1] 

|√
T 

|
t=[τT ] 

Chebyshev’s inequality says that if E[x] = µ and V ar(x) = σ2 , then P ( x − µ > η) ≤ σ
η2

2 
. Here, �[(τ+δ)T ] �[(τ +δ)T ] 

| |
1 1E[ √
T t=[τT ] �t] = 0 and V ar(√

T t=[τT ] �t) = [δT 
T 
]σ2 

and these things do not depend on τ , so 

[(τ +δ)T ] 

P ( sup 
1 � 

�t > η) ≤ 
[δT ]σ2 

|√
T 

| 
Tη2 

τ ∈[0,1] 
t=[τT ] 

Hence, setting δ ≤ η2ε we have the desired result. σ2 

http://cscs.umich.edu/~crshalizi/weblog/472.html
http://cscs.umich.edu/~crshalizi/weblog/472.html
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Stochastic Integrals 

Our interest in stochastic integrals comes from the fact that we would like to say something about the 
convergence of 

� 

� 

� � 

1 � 1 � 
yt�t = ξT (t/T )

√
T (ξT (t/T ) − ξT ((t − 1)/T ))

T T 

We know that ξT ⇒ W , a Brownian motion. If W were differentiable, we’d also know that limT →∞ 

√
T (W (τT/T )−

W (([τT ] − 1)/T )) = W �(τ ). Finally, a sum like the above would usually converge to an integral 

T	 � 11 � 
f(t/T )g�(t/T ) f(x)dg(x)

T	
→ 

0t=1 

We would like to generalize the idea of an integral to apply to random functions such as ξ. There are a few 
problems. First, W is not differentiable. Nonetheless, we can still look at 

T1 � 
lim ξ(t/T )(W (t/T ) − W ((t − 1)/T ))

T →∞ T 
t=1 

We must verify that this sum converges to something. We will call its limit a stochastic integral, and write � 1it as ξ(t)dW (t). We then want to define stochastic integrals more generally and make them have some 
0 

of the properties of Riemann integrals. In particular, we want to make sure that the limit of the sum does 
not depend on how we partition [0, 1], i.e. for any increaing tT ∈ [0, 1] such that limT maxi t

T − tT = 0 we i	 i i+1 
should have 

1 �T	 1 
T

lim ξ(t/T ) ∗ (W (t/T ) − W ((t − 1)/T )) = lim ξ(tTi ) ∗ (W (tTi+1) − W (tTi )) 
T →∞ T 

t=1 
T →∞ T 

t=1 

Furthermore, we want to define � 
x(t)dW (t) 

for a suitable broad class of stochastic functions, x(t). 
Here’s a sketch of how to proceed: 

1. Define stochastic integrals for elementary processes. An elementary process is a step function, like ξT . 
More precisely, X(t) is elementary if there exist {ti} such that X(t) = X(ti) is t ∈ [ti, ti+1). Also, 
assume that E X(t)2dt < ∞, then we define our integral as: 

X(t)dW = X(ti)(W (ti+1 − W (ti))) 

we have no limits or choice of partitions here, so this is a well defined object. 
 

2. Note that any X(t) that is square integrable, E X(t)2dt < ∞, can be approximated by a sequence 	  
of elementary processes, Xn, in the sense that lim

�
( n(t))2n E X(t) − X dt → 0 �	

dW (
� 

3. Define	 X(t)  t) = limn Xn(t)dW (t) where Xn is 

�
an

�
y sequence of elemen

�
tary processes converging 

to X(t). Show that this definition does not depend on the choice of sequence. 
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Ito’s Lemma 

An Ito process is defined as � 1 � t 

X(t) = X0 A(s)ds + B(s)dW 
0 0 

where X0 is random variable independent of W and A and B are stochastic processes. This is also written 
as 

� � 

� � 

� � 

� 

dX = Adt + BdW 

Ito’s lemma tells us how write f(t, X(t)) in terms of integrals instead of a composition of functions. Ito’s 
lemma says that 

∂f ∂f 1 ∂2f 
dF = (t, X(t))dt + (t, X(t))dX + B(t)2 (t, X(t))dt 

∂t ∂x 2 ∂x2 

or in terms of integrals, � t � � 
∂f ∂f 1 ∂2f 

F (t) − F (0) = (s, X(s)) + A(s) (s, X(s)) + B(s)2 (s, X(s)) dt+ 
∂t ∂x 2 ∂x2 

0 � t ∂f 
+ B(s) (s, X(s))dW 

∂x 0 

Remark 2. Let’s compare this lemma to what we would have with nonstochastic integrals and functions. 
Suppose x(t) = x0 + 

0 
t 
A(s)ds + 

0 
t 
B(s)dW where all integrals and functions are nonstochastic. Let F (t) = 

f(t, x(t)). Differentiating gives: 

∂f ∂f 
F �(t) = + (A(t) + B(t)W �(t))

∂t ∂x 
which is the same as Ito’s lemma, but without the second order term. The reason the second order term 
appears in Ito’s lemma is that dWdW is not “small”, unlike dtdt. 

Example 3. Consider 
� 

WdW . In lecture we saw that 
� 

WdW = W (1)
2 

2 −1 . We “showed” this by working with 
ξT and rearranging various sums. Using the definition of stochastic integrals and the exact same argument 
with ξT playing the role of elementary processes you can formally verify this equality. Alternatively, Ito’s 
lemma can be used. Take X(t) = W (t). This is an Ito process with A = 0 and B = 1. Consider 
f(t, X(t)) = X(t)2/2, then 

∂f ∂f 1 ∂2f 
dF = (t, X(t))dt + (t, X(t))dX + B(t)2 (t, X(t))dt 

∂t ∂x 2 ∂x2 

1 
=X(t)dX + dt

2 
1 

=WdW + dt
2 

and integrating tells us: 

1 t 
dW 2 = WdW +

2 2 � t 1 
WdW =

2
(W (t)2 − t) 

0 

Convergence to Stochastic Integrals 

De Jong and Davidson (2000) give general conditions for sums of the type 

T t

( us)wt+1 

t=1 s=1 

to converge to UdW . I would say something more about this if I had time. 
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Local to Unity Asymptotics 

An important general point to get from the lecture on local to unity asymptotics is that uniform convergence 
is often important for asymptotic results to give good approximations in practice. Recall that uniform 
convergence means that: 

sup sup |P (t(θ, T ) ≤ x) − Φ(x)| �→ 0 
θ∈Θ x 

What this means is that no matter how large your sample size, there is some parameter value, θ, such that 
the error in the asymptotic approximation remains large. Whether this is merely a theoretical curiosity or 
a real problem largely depends on the situation. Over the last fifteen years, lots of simulation and empirical 
evidence has shown that lack of uniform convergence does create practical problems in econometrics. Anna 
talked about how badly sized unit root tests can be. The problems with weak instruments can also be 
thought of as due to the lack of uniformity of convergence for parameters with the first stage coefficients 
near 0. 

Testing for Breaks 

I’ve never found testing for breaks to a particularly useful endeavor in applied macro. There just is not 
enough data to reach strong conclusions. However, testing for breaks raises many interesting econometric 
issues, which I suspect is why it has generated so many papers. One thing that makes breaks interesting is 
that their limit theory is nonstandard. Another is that testing involves nuisance parameters that are only 
present under the alternative. Let’s take a moment to review the standard approach to hypothesis testing. 

Suppose we want to test H0 : θ ∈ Θ0 against Ha : θ ∈ Θ1. Moreoever, being clever econometricians, we 
want to do the “best” test possible. What do we mean by best? Usually, we mean the most powerful test 
with correct size. A basic result is the Neyman-Pearson lemma. 

Lemma 4. Neyman-Pearson the most powerful test for testing a point hypothesis H0 : θ = θ0 against a 
point alternative is Ha : θ = θ1 is the likelihood ratio test, i.e. reject if L(θ0|x) ≤ η, where η is such that L(θ1|x) 

α = P ( L(θ0|x) 
L(θ1|x) ≤ η|H0) 

This is an important result, and it is the starting point for much of our thinking about testing problems. 
Unfortunately there are some difficulties in extending it to more complicated situations. For one thing, it is 
for exact finite sample tests, but we usually work with asymptotic tests. 

To analyze asymptotic tests, we simply think about tests that have the correct size asymptotically, and 
try to maximize asymptotic power against local alternatives. That is, we seek to maximize: 

lim P (reject|θ = θ1,T = θ0 + T −1/2δ)
T →∞ 

Among tests such that 
lim P (accept|θ = θ0) = α 

An important result says that every sequene of tests of asymptotic size α converges to a test of size α 
in the “limit experiment”, i.e. the world where the distribution of θ̂ is its asymptotic distribution. The 
Neyman-Pearson lemma tells us that in the limit experiment, the likelihood ratio test is the most powerful 
test for point hypotheses. Furthermore, we usually know the distribution of the likelihood ratio in the limit 
experiment, so this test is easy to implement. 

Another limitation of the Neyman-Pearson lemma is that it only applies to point hypotheses. For 
composite hypotheses, a good definition of the “best” test is one that is uniformly most powerful against all 
alternatives. That is a test of correct size that also maximizes power for each θ1 ∈ Θ1, i.e. it maximizes 
P (reject|θ = θ1 ∈ Θ1 for every θ1. Unfortunately, in general, uniformly most powerful tests do not exist. 
A simple example is testing if y has a two dimensional normal distribution with mean 0. We want to test 
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H0 : µ = 0 vs Ha : µ = 0. We can draw many different ellipsoidal (or any other shape) acceptance regions 
around 0 that have correct size, but it is clear that no single acceptance rule will be uniformly most powerful. 
For example, a thin, long acceptance regions will have high power in some directions, but low power in others. 

The lack of uniformly most powerful tests is disappointing because it introduces some arbitraryness into 
defining what we mean by the “best” test. One way to proceed is to require some sort invariance in testing 
procedures. For example, we might require that the gives the same answer when we shift our data by adding 
a constant, or when we apply a rotation, or more generally when we take any linear combination. For testing 
whether the mean of a multivariate normal is 0, the likelihood ratio test is the uniformly most powerful 
rotationally invariant test. 

� 

� � � 

�

Another common testing problem is that we often only want to test a subset of our parameters, say θ1 , 
while we do not care about the value of the rest of the “nuisance” parameters, θ2 . If we can consistently 
estimate the nuisance parameters under H0, then we test conditional on our estimated nuisance parameters, 
and conditional likelihood ratio tests will be optimal in the sense described above. 

Nuisance parameters become even more of a nuisance if they cannot be consistently estimated under H0. 
One way to proceed is to try to find a test that is invariant to any possible value of the nuisance parameters, 
so that we ignore them. Unfortunately this type of invariance is often too stringent of a requirement and 
invariant tests might not exist. In this situation, it is still easy enough to think of tests with correct size. 
An obvious test statistic to consider is the maximum over possible values of the nuisance parameters of the 
likelihood ratio statistic. For example, when testing for breaks, the nuisance parameter is the time of the 
break, t0 = [δT ]. The Quant statistic is the maximum of the likelihood ratio. 

Q = sup FT ( 
t0 ) 

[δT ]≤t0≤[(1−δ)T ] T 

This is a fine test statistic, and given the Neyman-Pearson lemma, we would expect it to have good power 
properties. But how good? One parsimonious way of quantifying the test’s power properties is to place a 
distribution on possible values of the nuisance parameters and parameters of interest, say F (δ, θ), and then 
look at weighted average power, 

WAP = P (reject|θ = (θ1
1, δ))dF (δ, θ) 

This idea goes back to Wald. He showed that likelihood ratio tests for H0 : µ = 0 for normal distributions 
maximize WAP over alternatives with uniform weight on {θ1 : ||Σ−1θ1|| = c}. Andrews and Ploberger (1994) 
considered the more general problem of maximizing weighted average power in the presence of nuisance 
parameters. They showed that the test statistic that maximizes WAP is of the form: 

1 1 
Exp − LR = (1 + c)−p/2 exp LR(δ) dF (δ)

2 1 + c 

where LR(δ) is the usual likelihood ratio statistic for test H0 : θ = 0 vs Ha : θ =� 0, δ0 = δ, F (δ) is the 
marginal weight δ and c is a constant that depends on the joint weight function, F (δ, θ). Furthermore, since 
LR, Lagrange multiplie, and Wald tests are asymptotically equivalent, the LR statistic can be replaced with 
the LM or Wald statistic. 
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