
14.385
Nonlinear Econometrics

Lecture 4.

Theory: Asymptotic Distribution of GMM/Nonlinear IV

Application: Revisit probits and logits. Multinomial
choice.

Topics to be covered in TA Session:

Testing (Parallels OLS)

Variance Estimation (Parallels OLS)
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Asymptotic Normality of GMM and Nonlinear IV.

Recall Idea: Estimate parameters by setting sample
moments to be close to population counterpart.

Definitions:

β : p× 1 parameter vector, with true value β0.
gi(β) = g(zi, β) : m× 1 vector of functions

of ith data observation zi and parameter.

Model (or moment restriction):

E[gi(β0)] = 0.

Definitions:

ĝ(β) := En[gi(β)] : Sample averages.
Â : m×m positive definite matrix.

Lead Examples:
IV: gi(β) = (Yi −Xiβ)Zi, Â = V̂ ar[gi(β0)]−1

NIV: gi(β) = f(Yi, Xi, β)Zi, Â = V̂ ar[gi(β0)]−1

MLE: gi(β) = ∇ ln f(Zi, β), Â = I
M: gi(β) = ∇m(Zi, β), Â = I.

GMM ESTIMATOR:

β̂ = argmin ĝ(β)′Âĝ(β).
β
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This is a special case of extremum estimator, so the
arguments of the previous type can be applied to get
the following result.

ASYMPTOTIC NORMALITY OF GMM: If the data
are i.i.d. or stationary strongly mixing with rate greater
than β̂

p
two, → β0 and i) β0 is in the interior of the pa-

rameter set over which minimization occurs; ii) gi(β)
is continuously differentiable on a neighborhood N of

p
β0; iii) E[supβ ‖∇gi(β)‖] is finite; iv) Â → A positive∈N
definite and G′AG is nonsingular, for G = E[ gi(β0)];
v) for i.i.d. data, Ω = E[g

∇
i(β0)gi(β0)′] is finite and for

mixing data Ω = limn V ar[ĝ(θ0)] exists and is finite, then

√
1
→dn (β̂ − β0) N(0, V ),

V = ( 1G′AG)− G′AΩAG(G′AG)− .

Proof: For Ĝ = ∇ĝ(β̂), we have the FOC,

0 = Ĝ′Âĝ(β̂).

We can expand them as

0 = Ĝ′Â{ĝ(β0) +∇ĝ(β̄)[β̂ − β0]},
where ∇ĝ(β̄) stands for the matrix whose each row eval-
uated at (a row-dependent) β̄ located on the line joining
θ0 and θ̂, and solve for

√ 1n(β̂ − β0) = −[Ĝ′Â∇ĝ(β̄)]− Ĝ′Â
√

nĝ(β0)

By the ULLN and the CMT, we have that

−[Ĝ′Â∇ p
ĝ(¯ 1β)]− Ĝ′Â → −(G′AG)−1G′A.
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Application of the CLT gives us

√ →dnĝ(β0) N(0,Ω).

Applying Slutsky, we get

√ →dn(β̂ − β0) −(G′AG)−1G′A ·N(0,Ω).

Notes: (1) Â affects V only through plim(Â).

(2) If m = p, then

= 1G−1V ΩG− ′,

and A drops out. Thus, the choice of the matrix A has
no effect on asymptotic variance in this case. We have
m = p for MLE, M-estimators, and “exactly identified”
GMM. We have that m > p for “overidentified” GMM.

(3) The optimal choice of A is given by A ∝ Ω−1, in
which case

= ( ′Ω−1 )−1V G G .

(4) MLE. Assume i.i.d. data. For MLE, under correct
specification:

g(z, θ) = ∇ ln f( 2z, θ), G = E∇ ln f(z, θ),

Ω = var[∇ ln f(z, θ0)], and −G = Ω

so that

V = −G−1 = Ω−1.
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The fact that G = Ω is known as information matrix
equality, which holds under some regularity conditions.

(5) M-estimators, including MLE under incorrect
specification. We have

g(z, θ) = ∇m(z, θ), G = E∇2m(z, θ0),

Ω = Var[∇m(z, θ0)],

so that

V = G−1ΩG−1.

This is known as Huber’s sandwich formula or, more
simply, robust variance-covariance matrix.

(6) Linear IV. Illustrate plausibility of conditions with
Linear IV:

interior parameter condition (i) holds by assumption;
continuous differentiability (ii) holds by linearity of

gi(β) = Zi(yi −Xi
′β)

in β; dominance condition (iii) holds as long as second
moments exist, by

∇gi(β) = −ZiXi
′ G = −EZiXi

′

; (iv) holds as long as A is nonsingular and G = E[ZiXi
′]

has full column rank; and (v) holds as long as
−

Ω = E(Yi −Xi
′β0)

2ZiZi
′
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is finite. Then, with A ∝ Ω−1,

V = (G′Ω−1G)−1.

(7) As stated in the theorem, i.i.d. sampling can be
replaced by strict stationarity and strong mixing with
rate larger than 2, that is provided mixing coefficients
α(j) go to zero at rate j−α as j →∞, for α > 2, in which
case the limit variance takes the form

Ω = lim V ar[
√

n→∞
nĝ(θ0)].

(8) However, in many cases we can use the CLT for mar-
tingale difference sequences, which is much more rele-
vant in dynamic economic applications. For instance, in
Hansen and Singleton gi(β0) being a martingale differ-
ence sequence is implied by economic assumptions. In
this case, the limit variance is the same as in the i.i.d.
case:

Ω = V ar[gi(θ0)] = E[gi(β0)gi(β0)
′].
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Revisit Maximum Likelihood Estimation for Binary
Choice:

ln fi(β) = yi logF (x′iβ) + (1
(

− yi) log(1− F (x′iβ))

y∇ ln fi(β) =
i − F (x′iβ)

F (x′iβ) · (1− F (x′iβ))

CLT for the score

)
f(x′iβ)xi

√ f2

nEn∇ ln fi(β0) →d N(0, E i x
Fi(1− ix

′
Fi)

i)

since V ar(yi − Fi|xi) = Fi(1− Fi). Therefore:

√ f2

n(β̂ − β) →d N(0, [E i ′ 1x
i(1− ix

Fi)
i]
− )

F

These variance formula is valid only under correct spec-
ification. Under incorrect specification, treat as an M-
estimator, and use the Huber’s robust sandwich formula.

Probit and Logit Examples:

For probit:
√ −d

n(β̂ − β) → N(0 φ2

, E i x
Φi(1−Φi) ix′i]

−1).

For logit:
√ 1n(β̂ − β) →d N(0, [EΛ(x′iβ)(1− Λ(x′iβ))xix

′
i]
− ).

You can also do NLS by minimizing

β̃ = argmin 2En(yi − F (x′iβ))
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by using the relations:

yi = F (x′iβ) + εi, E(εi|xi) = 0, V (εi|xi) = F (x′iβ)(1− F (x′iβ)).

The NLS β̃ is not efficient because of heteroscedasticity,
so you can do GLS:

β̂ = argminEn

[ 1
( 2y′˜ − ′˜ i F

F (xiβ)(1 (xiβ))
− (x′iβ))

F

]
,

which attains the same efficiency as MLE.

The usual choice for probit and logit is MLE due to com-
putational reasons: the least squares problem is non-
convex, whereas log-likelihood for probits and logits is
concave.
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Multinomial Choice Models

The multinomial choice or qualitative response models
provide a framework for analysis of choice among finite
sets of alternatives, with each alternative characterized
as a bundle of attributes.

We consider the following example that captures the
basics of these models. Consider predicting urban de-
mand for various modes of transportation. The utility
of a commuter from taking choices car, train, and bus
are given by:

1. Bus(y = 1): U1i = µ1i + ε1i

2. Train(y = 2): U2i = µ2i + ε2i

3. Car(y = 3): U3i = µ3i + ε3i

Here µki characterizes the systematic part of utility, called
the “mean utility,” attributable to observed characteris-
tics xi of modes of transportation and of the commuter,
and εki is an unobserved disturbance. Often we use

µki = x′iβk

or more general functional forms. In what follows, we
use Pi(yi = 1) to denote P (yi = 1|xi).

Then

Pi(yi = 1) = Pi(U1i ≥ U2i, U1i ≥ U3i),
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Pi(yi = 2) = Pi(U2i U1i, U3i U1i), and Pi(yi = 3) =
Pi(

≥ ≥
U3i

the lik
≥ U1i, U3i U2i). This allows use to write down
elihood function,

≥
using the fact that the con-

ditional log-likelihood function of a single observation
(yi, xi) is ∑

1{yi = k} lnPi(yi = k)
k

Theory: The usual MLE analysis applies to get CAN
and efficient estimators, subject to regularity conditions.
We should use M-estimation approach to account for
possible misspecification.

Multinomial Logit Model: This model postulates that

eµik

Pi(yi = k) =

has

∑ .
µ

k e ik

McFadden shown that this model can be derived
from optimizing behavior: Suppose disturbances ε1i, ε2i,
ε3i are i.i.d. and each one distributed as Type-I extreme
Value, with Gumbel distribution function,

F (ε) = e−e−ε

that has density f(ε) = e−εe−e−ε

. Then the choice prob-
abilities are described by the formula above. The as-
sumption on the errors is also a necessary condition for
the formula above to hold.
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We illustrate the calculation using the travel example:

Pi(y∫i = 2) = Pi(ε1 + µ1 ≤ ε2 + µ2, ε3 + µ3 ≤ ε2 + µ2)
∞

= f(ε2)Pi(ε1 ≤ ε2 + µ2 − µ1|ε2)Pi(ε3 ≤ ε2 + µ2 − µ3|ε2)dε2
−∞

=

∫ ∞
e−ε [e−e−ε2[1+eµ1−µ2+eµ3−µ22 ]]dε2

−∞

=

∫ ∞
−[1+eµ1−µ2+ ]e eµ3−µ2 xdx [ using x = e−ε2]

0
1

=
1 + eµ1−µ2 + eµ3−µ2

eµ2

= .
eµ1 + eµ2 + eµ3

Similarly, Pi(yi = 1) = eµ1 ,
eµ1+eµ2+eµ3

and Pi(yi = 3) =
eµ1 .

eµ1+eµ2+eµ3

It is also easy to get that

eµ1

Pi(y = 1|y = 1 or y = 2) =
eµ1 + eµ2

eµ3

Pi(y = 3|y = 1 or y = 3) =
eµ1 + eµ3

and so on.

IIA property: Relative choice probabilities depend only
on pairwise comparisons. This is the independence from
the “irrelevant” alternatives. E.g., in the last equa-
tion, the relative frequency of choosing between 1(bus)
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and 3(car) does not depend on characteristics of choice
2(train). This might be unreasonable since bus(1) and
train(2) are both public transportation and the unob-
servable components of utility from them might be cor-
related. (A more extreme example would be to look at
buses painted in different colors.) Another way to look
at this is as follows: Suppose y = 2 is not available,
then

Pi(y = 3 without choice 2) = Pi(U3 ≥ U1)
eµ3

=
eµ1 + eµ3

Compare this to the probability of choosing y = 3,
having chosen either 1 or 3,

eµ3

Pi(y = 3|y = 1 or y = 3) = ,
eµ1 + eµ3

which is the same as above. Here, the relative fre-
quency of choosing between 1(bus) and 3(car) does not
depend whether the choice 2(train) is present. Again,
this might be unreasonable since bus(1) and train(2)
are both public transportation and utilities from them
might be correlated.

Discussion: The logit model is highly tractable and
computable due to the concave log-likelihood function.
Moreover, it is derivable from the optimizing choice be-
havior. The drawback of this model is the IIA property.
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Nested Logit: To allow for correlation between choice
1 and 2, introduce some dependence between ε1 and ε2
as follows:

F (ε1, ε2, ε3) = G(ε1, ε
e−ε3

2)F (ε3) = G(ε1, ε2)e
−

and

G(ε , ε ) = e−[e−ε1/ρ+e−ε2/ρ]ρ

1 2 ,

for 0 ≤ ρ ≤ 1. This is a bivariate type I extreme-value
(Gumbel) distribution. When ρ = 1 we are back to the
logit case, since then G(ε1, ε2) = F (ε1) F (ε2). When
ρ = 0,

·
ε1 and ε2 become perfectly correlated.

Then

Pi(yi = 1|yi = 3) = Pi(U1 ≥ U2|U1 ≥ U3 or U2 ≥ U3)

eµ1/ρ

= ,
eµ1/ρ + eµ2/ρ

using calculations similar to the previous ones. Also,

eµ3

Pi(y = 3) =
eµ3 + [eµ1/ρ + eµ2/ρ]ρ

These two quantities enable us to fully specify the like-
lihood. The IIA property no longer holds.

Discussion: Nested logit allows us to avoid some of
the limitations of logit. It also preserves the logit’s
computational tractability. There are further general-
izations, in particular, McFadden’s generalized extreme
value model, of which nested logit is a special case.
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(Lecture 4 contd.)

Multinomial Probit: Here we specify,

εi = (εki, k = 1, .., K) ∼ N(0,Σ).

This allows for very flexible correlation structure, but
the choice probabilities

Pi(y = j|xi) = Pi[Uj ≥ Uk, for all k]

are usually not available in closed form, so one has to
evaluate choice probabilities numerically, using Monte-
Carlo approach. In the MC approach, we simulate many
draws of

1 2ε = /
s Σ Zs, Zs ∼iid N(0, I), s = 1, ..., S,

then evaluate

Uks = x′iβk + εs, s = 1, ..., S,

and approximate

1
Pi(y = j|xi) ≈

S

1 U
s=1

{ js ≥ Uks, for all k
S

}.

The draws of {Zs, s = 1

∑

, ..., S} are generated only once
and reused in the evaluation of Pi(y = j|xi) at different
parameter values. Note that in the formula above, the
utility terms Uk depend on parameters β and Σ. The
approach was pioneered by McFadden.

Notes: There are many useful extensions, including
generalized extreme value models and sequential
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choice models (that exploit the sequentiality of de-
cisions). Both of these approaches help facilitate the
implementation.

The qualitative response models and their derivation
from the optimizing behavior were largely pioneered by
McFadden. McFadden also introduced the simulated
likelihood methods to econometrics, which was a major
innovation. Others who introduced simulated likelihood
in statistics and econometrics include Cencov˘ (60s),
Geyer, and Polard and Pakes.

References:

Amemiya, Advanced Econometrics, Chapter 9, and oth-
ers on the reading list.
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