
14.385
Nonlinear Econometrics

Lecture 5.

Theory: Two-step estimators. Efficiency. One-step es-
timators.
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Deriving Asymptotic Variances for Two-Step Esti-
mators:

This is really easy if one considers any estimator in a
GMM framework. Consider a two step estimator β̂ based
on the moment equation:

E[g(zi, β0, γ0)] = 0.

The preliminary estimate γ̂ of γ0 is based on the moment
equation:

E[h(zi, γ0)] = 0.

A formula for the asymptotic variance of such a two
step estimator can be derived by noting that θ̂ = (β̂′, γ̂′)′
is a joint GMM estimator with

g(z, β, γ)
g̃(z, θ) =

(
h(z, γ)

and applying the general GMM fo

)

rmula for its mo-
ment function with the block-diagonal weighting matrix.

Adaptive case. This is when the preliminary estimation
of γ̂ has no first-order impact on asymptotic variance of
β̂. That is, first order variance of β̂ is the same as if we
knew the true value γ0. It is often said in such situations
that β̂ is oracle-efficient.

Adaptivity occurs when

Gγ = ∇γE[g(zi, β0, γ0)] = 0.
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This means that the small changes in γ0 have negligible
first order impact on the root β0 of the equation. Indeed,
by the implicit function theorem, we have that

∇ ( ) = −1
γβ γ0 G Gγβ

where

Gβ = ∇βE[g(zi, β0, γ0)].

A more extreme case, a very important one, is when
even big changes do not affect the root β0. In MLE, as
the special case, the adaptive estimation of β is possible
when the information matrix

J = − 2E[∇ ln f(z, θ0)]

is block-diagonal with respect to β and γ.

Example 1 (Adaptive): Consider the population FOC
for the log-likelihood in the classical regression model:

2 (yi xiβ)xi
E[m(z, β, σ )] = E[

−
] = 0.

σ2

Here,

(y
Gσ2 = E[

i − xiβ0)xi
] = 0,

σ4

so consistent estimation of σ2, or even inconsistent es-
timation of σ2 has no impact on variance of β̂, the least
squares. A similar situation occurs for the generalized
least squares under correct specification, where prelimi-
nary estimation of weights has no first order impact on
the asymptotic variance.
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Example 2 (Non-adaptive): In PS2, you will work
through the two-step estimation of the selection model,
in which

φ(x′γ)
E[yi|xi] = x′iβ + α · λ(x′iγ), λ(x′iγ) = i ,

Φ(x′iγ)

which is the conditional expectation of a response vari-
able selected on the basis of whether or not

yi0 = x′iγ + εi ≥ 0.

Heckit: A convenient way to estimate this model is

1. to run a probit regression of the observed di =
1(yi0

sor
≥ 0) on x′iγ, obtaining an estimated regres-

λ(x′iγ̂),

2. to run ordinary least squares of yi on xi and λ(x′iγ̂).

This example is clearly non-adaptive in general. Indeed,
here we have

g(zi, β, α, γ) = di[xi, λ(x′iγ)]′[yi − x′iβ − α′λ(x′iγ)]

and
[d

m(zi, ) =
i −Φ(x′iγ)]

γ ;
[Φ(x′iγ)(1−Φ(x′iγ)]

and generally

Gγ = ∇γE[g(zi, β0, α0, γ0)] = 0.
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The two-step estimator is computationally convenient,
but is less efficient than the maximum likelihood estima-
tor. However, starting with an initial, computationally
convenient estimator, one can always gain efficiency by
doing a “one-step” from an initial estimate, using a
likelihood or other efficient criterion function.

Outline of the adaptivity argument: The two-step
estimator satisfies

ĝ(β̂, γ̂) := En[g(zi, β̂, γ̂)] = 0.

Expand for G̃β = ∇βĝ(β̄, γ̄) and G̃γ = ∇γĝ(β̄, γ̄), and

ĝ(β̂, γ̂) = ĝ(β0, γ0) + G̃β(β̂ − β0) + G̃γ(γ̂ − γ0)

and solve
√ 1n(β̂ − β0) = G̃− (ĝ(β0, γ0) + G̃γβ

√
︸︷︷︸

?
︸ n(γ̂ − γ0)︷︷ )

Op(1)

If G

︸

γ = 0, then G̃γ p 0 by ULLN under regularity con-
ditions, and prelimina

→
ry estimation has no effect on vari-

ance of β̂.

If Gγ = 0, then G̃γ →p Gγ under regularity conditions,
and preliminary estimation has a non-trivial effect on
variance of β̂. In such a case, simply treat the two-
step estimator in GMM framework and use appropriate
formulas for this case.

Reference: e.g. Newey and McFadden pp 2150–2152.
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Asymptotic Efficiency:

Here we emphasize two key results:

1) Asymptotic variance minimizing choice of any Â is

Â →p Ω−1.

2) MLE is the efficient estimator in the class of GMM
estimators, i.e. that ∇ ln f(z
moment

|θ) is the optimal choice of
functions g(z, θ).

EFFICIENT DISTANCE MATRIX. Note that if A =
Ω−1 the asymptotic variance reduces to (G′Ω−1G)−1 .We
have that if G′AG and Ω are nonsingular then

( ′ )−1 1G AG G′AΩAG(G′AG)− − ( 1 1G′Ω− G)− ≥ 0

Thus, the asymptotic variance of the GMM estimator is
minimized when A = Ω−1

Proof: Efficiency result is actually implied by Gauss-
Markov theorem for the linear model. Consider the clas-
sical normal linear regression model with m observations:

Y(m×1) = Gβ + ε, ε|G ∼ N(0,Ω),

so that

E[Y |G] = Gβ, V ar(Y |G) = Ω.

Consider the GLS estimator

(β̂ − β) = (G′Ω−1G)−1GΩ−1ε
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and the WLS

(β̃ − β) = (G′AG)−1G′Aε.

GLS has the variance matrix

(G′Ω−1G)−1

and WLS has the variance matrix

( 1G′ 1AG)− G′AΩAG(G′AG)− .

By Gauss-Markov Theorem, the former matrix is smaller
than the latter. ¤
Thus, in large samples, the GMM estimator is equiva-
lent in distribution to WLS for the normal regression
model. The optimally weighted GMM is equal in distri-
bution to the GLS that uses optimal weights.

Remarks. 1) The above proof is in the spirit of Le
Cam’s limits of experiments. In large samples, the
problem of choice of weight matrix is like the choice of
the weight matrix in the “experiment” with m-observation
normal regression model with design matrix G and dis-
turbances having general variance matrix Ω.

2) A more direct proof without “tricks” can be done as
follows.

Defs : L′L = Ω, H = (L′)−1G, F = (G′AG)−1G′AL′.
Note : H ′H = G′Ω−1G, FH = I.

Proof : ( 1G′AG)− G′AΩA′G(G′AG)−1 − (G′Ω−1G)−1

= 1 1FF ′ − (H ′H)− = FF ′ − FH(H ′H)− H ′F ′

= F (I −H(H ′H)−1H ′)F ′ ≥ 0.
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Notes: All that is needed for efficiency is that the limit
of Â is Ω−1. Thus, any consistent estimator of Ω−1

leads to an asymptotically efficient GMM estimator.

MLE is optimal GMM.

This follows from MLE attaining the Cramer-Rao lower
variance bound and from asymptotic unbiasedness of
MLE. (In fact, MLE is efficient among all estimators.)

The asymptotic efficiency of MLE among GMM is based
on a generalized information matrix equality. The mo-
ment conditions being satisfied for all possible θ means
that ∫

g(z, θ)f(z|θ)dz = 0

is an identity in θ. Assuming that differentiation under
the integral is allowed, we can differentiate this identity
to obtain,

0 =

∫
[∇g(z, θ0)]f(z|θ0)dz

+

∫
g(z, θ0)[∇ ln f(z|θ0)]f(z|θ0)dz

= G + E[gs′], G = E[∇g(z, θ0)],

where

g = g(z, θ0)
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and

s = ∇ ln f(z|θ0) = ∇f(z|θ0)/f(z|θ0).

That is, we have the generalized information equality

G = −E[gs′].

If we set

g(z, θ0) = ∇ ln f(z, θ0),

we get the usual information matrix equality:

= − [∇2J E ln f(z, θ0)] = E[∇︸ ln f(z, θ0)︷︷ ∇
s

︸ ︸ ln f(z, θ0)
′

︷︷

va

︸],
s′

that is, the information matrix is equal to the riance
of the score.

Theorem: (MLE is optimal GMM): If G+E[gs′] = 0,
E[ss′] = J is nonsingular, and G′Ω−1G is nonsingular
then

(G′Ω−1G)−1 − J−1 ≥ 0.

Proof: Consider the moment function h = −G′Ω−1g.
Then by G = −E[gs′] we have

E[hh′] = G′Ω−1G = −G′Ω−1E[gs′] = E[hs′],

that is the variance of moment function h is equal to its
covariance with the score s. This means that the score
s equals h plus some noise, i.e., the score s has bigger
variance than h. Indeed, the variance matrix of h− s is

E[hh′]− 2E[hs′] + E[ss′] = E[ss′]− E[hh′] ≥ 0,
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which says that J − (G′Ω−1G) ≥ 0. This in turn implies
the result. ¤

Comment: Maximum likelihood is also asymptotically
efficient more generally, not just in GMM class; MLE is
efficient in class of estimators satisfying certain regular-
ity conditions.

Comment: We can differentiate k(z, θ)dz in θ under
the integral sign, if e.g., first, ∇θk(z
for each z, and, second, supθ θ

∫
, θ) is continuous in θ
k(z, θ) dz < . This

allows us to apply the dominated

∫ ‖∇
convergence

‖
theo
∞

rem,
and conclude that

∇θ

∫
k(z, θ)dz =

∫
∇θk(z, θ)dz.

Theoretical exercise: verify this.
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Iteration and “One Step” Estimation:

This material is important for

• numerical work,

• obtaining efficient estimators,

• and bootstrap.

In numerical computations, starting from

an initial estimate θ̃,

there are two common ways of iteration to obtain the

next step estimate θ̄.

1. Newton-Raphson Step. Minimize the quadratic ap-
proximation for Q̂(θ):

1
Q̂(θ) ≈ Q̂(θ̃) +∇Q̂(θ̃)′(θ − θ̃) + (θ − θ̃)′∇2Q̂(θ̃)(θ

2
− θ̃).

minimize RHS and get FOC

=⇒ ∇Q̂(θ̃) +∇2Q̂(θ̃)(θ̄ − θ̃) = 0

solve the FOC

=⇒ θ̄ = θ̃ − [∇2Q̂(θ̃]−1∇Q̂(θ̃)

(Draw picture to see how it works.)
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2. Gauss-Newton. Use an approximation obtained by
linear approximation for the first-order condition, e.g.
GMM:

Q̂(θ) ≈ (ĝ(θ̃) + G̃(θ − θ̃))′A(ĝ(θ̃) + G̃(θ − θ̃))′

the approximate first order condition

=⇒ G̃′A[ĝ(θ̃) + G̃(θ̄ − θ̃)] = 0.

solve first order condition

=⇒ θ̄ = 1θ̃ − (G̃′AG̃)− GA˜ ĝ(θ̃)

“Theorem”: Under regularity conditions, if the initial
guess is a

√
n consistent estimate, i.e.

1
(θ̃ − θ0) = Op(√ ),

n

then √
n(θ̄ − θ0) =

√
n(θ̂ − θ0) + op(1),

for

θ̂ = argmin Q̂(θ).
θ

Thus, under regularity conditions, “one-step” estima-
tors are equivalent to the extremum estimator up to
the first order. Further iterations do not increase (first-
order) asymptotic efficiency.

Remark: you can supply your own regularity conditions
and details for the proof to formalize this.

“Proof”: The proof can be outlined as follows:
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a) For Newton-Raphson:
√

n(θ̄ − θ0)

=
√ 2n(θ̃ − θ0)−∇ Q̂(θ̃)−1√n∇Q̂(θ̃)

=
√ 2n(θ̃ − θ0)−∇ Q̂(θ̃)−1[

√ 2n∇Q̂(θ0) +∇ Q̂(θ∗)
√

n(θ̃ − θ0)]

= (︸I −∇
2Q̂(θ̃)−1∇2Q̂(θ∗))︷︷

√

op(1)
︸ ︸ n(θ̃ − θ0)︷︷

√−
Op(1)

︸ ∇2Q̂(θ̃)−1
︸ n∇Q̂(θ0)︷︷√ ︸

n(θ̂−θ0)+op(1)

= op(1) +
√

n(θ̂ − θ0)

b) For Gauss-Newton:
√

n(θ̄ − θ0) =
√ 1n(θ̃ − θ0)− (G̃′AG̃)− GA˜

√
nĝ(θ̃)

=
√ 1n(θ̃ − θ0)− (G̃′AG̃)− G̃′A

√
n[ĝ(θ0) + G∗(θ̃ − θ0)]

= (︸
1I − (G̃′AG̃)− G̃′AG∗)︷︷

√

op(1)
︸ ︸ n(θ̃ − θ0)︷︷

√−
Op(1)

︸ (G̃′AG̃)−1G̃′A︸ nĝ(θ0)︷︷√ ︸
n(θ̂−θ0)+op(1)

= op(1) +
√

n(θ̂ − θ0). ¤

Now you can see why “one-step” estimators and their
properties are very important for

• numerical work (the one-step theorem is a posi-
tive result on the possibility of obtaining statistically
well-behaved estimates),

• obtaining efficient estimators (we can simply do
“one-steps” on efficient criterion functions starting
with computationally convenient initial estimates),
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• and bootstrap (in bootstrap samples, instead of
recomputing the extremum estimate, we can do
“one-steps” from the initial sample extremum esti-
mate).
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