14.385 Nonlinear Econometrics

Lecture 6.

Theory: Bootstrap and Finite Sample Inference

Reference: Horowitz, Bootstrap.

Review 381 notes for finite-sample inference in the regression model with non-normal errors.

Setup:

 $\{X_i, i \leq n\}$ is data.

 $F_0 \in \mathcal{F}$ is DGP.

Statistical model of DGP:

 $\mathcal{F} = \{F(x,\theta), \theta \in \Theta\}$ (parametric model).

 $\mathcal{F} = \{F \text{ is a cdf}\}$ (nonparametric model).

Statistic of interest :

$$T_n = T_n(X_1, \dots, X_n).$$

Example. $T_n = t_j$ a t-statistic based on $\hat{\beta}_j$ in linear reg.

 $G_n(t, F_0) = P_{F_0}(T_n \leq t)$ exact df.

 $G_n(t,F) = P_F(T_n \le t)$ exact df under F.

We want to estimate $G_n(t, F_0)$ in order to

• use α - quantiles of $G_n(t, F_0)$, denoted

$$G_n^{-1}(\alpha, F_0) = \inf\{t : G_n(t, F_0) \ge \alpha\},\$$

for confidence regions and hypothesis testing,

• use the p-values

$$1-G_n(t,F_0)|_{t=T_n},$$

\sim	
/	
~	

for testing, when a large value of T_n suggests a rejection.

The asymptotic df under F_0 is $G_{\infty}(t, F_0) = \lim_n G_n(t, F_0).$ and asymptotic df under F is $G_{\infty}(t, F) = \lim_n G_n(t, F).$

Asymptotic Estimation Principle:

Estimate $G_n(\cdot, F_0)$ using $G_{\infty}(\cdot, F_0)$.

This is the usual principle we use.

Bootstrap Estimation Principle:

Estimate $G_n(\cdot, F_0)$ using $G_n(\cdot, \hat{F})$.

Two choices for \hat{F} :

(i) $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i \leq x\} \Rightarrow$ nonparametric bootstrap

(ii) $\hat{F}_0(x) = F(x, \hat{\theta}) \Rightarrow$ parametric bootstrap.

There are also hybrid versions.

Monte-Carlo Algorithm for Tabulation of $G_n(t, \hat{F})$.

1. For j = 1, ..., B generate a bootstrap sample of size n,

$$\{X_{ij}^*, i = 1, ..., n\},\$$

by sampling from \hat{F} randomly. If \hat{F} is an empirical df, sample estimation data randomly with replacement.

2. Compute

$$T_{nj}^* = T_n(X_{1j}^*, ..., X_{nj}^*), \quad j \le B.$$

3. Use the sample $\{T_{nj}^*, j \leq B\}$ to compute the empirical probability of the event $\{T_n^* \leq t\}$. For estimates of quantiles, simply use the empirical quantiles of the sample $\{T_{nj}^*, j \leq B\}$.

Finite-Sample Principle:

1. Estimate $G_n(\cdot, F_0)$ using $G_n(\cdot, F_0)$ if know F_0 . This is generally infeasible, but this is the idea.

2. In some lucky cases, exact distribution of the statistic does not depend on F:

$$G_n(t, F_0) = G_n(t, F) \quad \forall F \in \mathcal{F}.$$

If this holds, then the statistic T_n is said to be **pivotal** relative to the statistical model \mathcal{F} . Thus, under pivotality, we can use any DGP $F \in \mathcal{F}$ to tabulate $G_n(t, F_0)$.

Example 1. The t-statistic in Normal Gauss Markov Model with normal disturbances, \mathcal{F}_{GMN} , follows a t-distribution

$$T_n = t_j \sim t(n - K).$$

that does not depend on DGP F within this model. That is, the distribution does not depend on the unknown parameters such as the regression coefficient β and variance of disturbances σ^2 .

Its distribution $G_n(t, F_0)$ was tabulated by Student.

Example 2. The t-statistic in Gauss Markov Model with t-disturbances with known degrees of freedom θ (denoted by $\mathcal{F}_{GMt(\theta)}$) is pivotal, as we argued in 14.381.

That is, the distribution does not depend on the unknown parameters such as the regression coefficient β and variance of disturbances σ^2 .

Denote this statistical model by $\mathcal{F}_{GMt(\theta)}$.

In 381, we *tabulated* its distribution $G_n(t, F_0)$ using Monte-Carlo.

Recall details: in 381 we did this for n = 6 motivated by Temin's data-set on Roman wheat prices.

3. (Advanced Finite-Sample Inference) If do not know F_0 , put bounds on $G_n(t, F_0)$ using

$$B_n = [\inf_{F \in \widehat{\mathcal{F}}} G_n(t, F), \quad \sup_{F \in \widehat{\mathcal{F}}} G_n(t, F)]. \tag{1}$$

Use them to bound the p-values and quantiles of $G_n(t, F_0)$.

Example 3. Recall Example 2, but now take t-statistic in classical linear regression model with t-disturbance with unknown degrees of freedom θ . Recall that in Temin's exercise, we have constructed \mathcal{F} by varying θ over a set of "reasonable values" for degrees of freedom provided by an expert:

$$\mathcal{F} = \{\mathcal{F}_{GMt(\theta)}, \theta \in \{4, 8, 30\}\}.$$

We then set $\widehat{\mathcal{F}} = \mathcal{F}$, tabulate p-values and quantiles of our statistic under each $F \in \widehat{\mathcal{F}}$, and then we take the least favorable estimates.

Choice of $\widehat{\mathcal{F}}.$ Ideally, we want to choose the set $\widehat{\mathcal{F}}$ such that

$$G_n(t,F_0)\in B_n.$$

For this purpose, it suffices but is not necessary that

$$Prob[F_0 \in \widehat{\mathcal{F}}] \to 1.$$

Also we want $\widehat{\mathcal{F}}$ to "converge" to F_0 in the sense that

$$d(B_n, G_n(t, F_0)) \to_p 0,$$

i.e. the distance between B_n and $G_n(t, F_0)$ goes to zero.

This allows us to conduct asymptotically efficient inferences, while preserving finite sample validity.

Remark^{*}: The convergence to a singleton can fail when $F \mapsto G_n(t, F)$ is not continuous in F at $F = F_0$.

In parametric cases it suffices to set

$$\widehat{\mathcal{F}} = \{ F(\cdot, \theta) : \theta \in CI_{1-\beta_n}(\theta_0) \}, \quad \beta_n \to 0,$$

where $CI_{1-\beta_n}(\theta_0)$ could be constructed by the usual means.

Computation: Computation of the conservative bound B_n may seem like a laborious task. However, its success depends on finding **at least one** θ' that yields inferences that are more conservative than using θ_0 .

Computational Idea (Perturbed Bootstrap):

1. Start with $\theta_1 = \hat{\theta} \in CI_{1-\beta_n}(\theta_0)$. Tabulate $G_n(\alpha, F(\cdot, \theta_1))$. That is, the first step is just the bootstrap.

2. Draw a nearby value $\theta_2 = \hat{\theta} + \eta \in CI_{1-\beta_n}(\theta_0)$, where η is some random perturbation. Tabulate $G_n(\alpha, F(\cdot, \theta_2))$.

3. Repeat step 2 until some clear stopping criterion is reached.

4. For purposes of inference take the *least favorable por critical value* generated in this way.

5. Save your code and the Monte-Carlo seed for replicability.

We are thus guaranteed to do *at least* as well as in parametric bootstrap.

Applicability. This finite-sample method is applicable under various non-standard conditions, including

- small sample sizes,
- partially identified models,
- non-regular models,
- moment inequalities.

The method is increasingly becoming more feasible with better computing.

Excellent Example: Oleg Rytchkov's Dissertation (Sloan Ph.D. 2007).

(Technical.* Proceed with care.) In non-parametric cases we can set

$$\widehat{\mathcal{F}} = \{F : F \in CI_{1-\beta_n}(F_0)\}, \quad \beta_n \to 0,$$

where the confidence regions $CI_{1-\beta_n}(F_0)$ collects all cdfs F such that

$$F(t) \in [F_n(t) - c_n(1 - \beta_n), F_n(t) + c_n(1 - \beta_n)],$$

where

 $c_n(1-\beta_n)$ is $1-\beta_n$ quantile of the limit distribution of Kolmogorov-Smirnov Statistic

$$\sqrt{n}\sup_t |F_n(t)-F_0(t)|.$$

This limit distribution is given by the distribution of random variable

 $\sup_{t}|B(t)|,$

where $B(\cdot)$ is a F_0 -Brownian bridge that describes the limit distribution of the random map

$$\sqrt{n}(F_n(\cdot)-F_0(\cdot)).$$

Under F_0 continuous, $B(\cdot)$ is pivotal, and its distribution has been tabulated.