Locally Linear Regression:

There is another local method, locally linear regression, that is thought to be superior to kernel regression. It is based on locally fitting a line rather than a constant. Unlike kernel regression, locally linear estimation would have no bias if the true model were linear. In general, locally linear estimation removes a bias term from the kernel estimator, that makes it have better behavior near the boundary of the x 's and smaller MSE everywhere.

To describe this estimator, let $K_{h}(u)=h^{-r} K(u / h)$ as before. Consider the estimator $\hat{g}(x)$ given by the solution to

$$
\min _{g, \beta} \sum_{i=1}^{n}\left(Y_{i}-g-\left(x-x_{i}\right)^{\prime} \beta\right)^{2} K_{h}\left(x-x_{i}\right) .
$$

That is $\hat{g}(x)$ is the constant term in a weighted least squares regression of Y_{i} on $\left(1, x-x_{i}\right)$, with weights $K_{h}\left(x-x_{i}\right)$. For

$$
\begin{gathered}
Y=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), X=\left(\begin{array}{cc}
1 & \left(x-x_{1}\right)^{\prime} \\
\vdots & \vdots \\
1 & \left(x-x_{n}\right)^{\prime}
\end{array}\right) \\
W=\operatorname{diag}\left(K_{h}\left(x-x_{1}\right), \ldots, K_{h}\left(x-x_{n}\right)\right)
\end{gathered}
$$

and e_{1} a $(r+1) \times 1$ vector with 1 in first position and zeros elsewhere, we have

$$
\hat{g}(x)=e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W Y .
$$

This estimator depends on x both through the weights $K_{h}\left(x-x_{i}\right)$ and through the regressors $x-x_{i}$.

This estimator is a locally linear fit of the data. It runs a regression with weights that are smaller for observations that are farther from x. In constrast, the kernel regression estimator solves this same minimization problem but with β constrained to be zero, i.e., kernel regression minimizes

$$
\sum_{i=1}^{n}\left(Y_{i}-g\right)^{2} K_{h}\left(x-x_{i}\right)
$$

Removing the constriant $\beta=0$ leads to lower bias without increasing variance when $g_{0}(x)$ is twice differentiable. It is also of interest to note that $\hat{\beta}$ from the above minimization problem estimates the gradient $\partial g_{0}(x) / \partial x$.

Like kernel regression, this estimator can be interpreted as a weighted average of the Y_{i} observations, though the weights are a bit more complicated. Let

$$
S_{0}=\sum_{i=1}^{n} K_{h}\left(x-x_{i}\right), S_{1}=\sum_{i=1}^{n} K_{h}\left(x-x_{i}\right)\left(x-x_{i}\right), S_{2}=\sum_{i=1}^{n} K_{h}\left(x-x_{i}\right)\left(x-x_{i}\right)\left(x-x_{i}\right)^{\prime}
$$

$$
\hat{m}_{0}=\sum_{i=1}^{n} K_{h}\left(x-x_{i}\right) Y_{i}, \hat{m}_{1}=\sum_{i=1}^{n} K_{h}\left(x-x_{i}\right)\left(x-x_{i}\right) Y_{i} .
$$

Then, by the usual partitioned inverse formula

$$
\begin{aligned}
\hat{g}(x) & =e_{1}^{\prime}\left[\begin{array}{ll}
S_{0} & S_{1}^{\prime} \\
S_{1} & S_{2}
\end{array}\right]^{-1}\binom{\hat{m}_{0}}{\hat{m}_{1}}=\left(S_{0}-S_{1}^{\prime} S_{2}^{-1} S_{1}\right)^{-1}\left(\hat{m}_{0}-S_{1}^{\prime} S_{2}^{-1} \hat{m}_{1}\right) \\
& =\frac{\sum_{i=1}^{n} a_{i} Y_{i}}{\sum_{i=1}^{n} a_{i}}, a_{i}=K_{h}\left(x-x_{i}\right)\left[1-S_{1}^{\prime} S_{2}^{-1}\left(x-x_{i}\right)\right]
\end{aligned}
$$

It is straightforward though a little involved to find asymptotic approximations to the MSE. For simplicity we do this for scalar x case. Note that for $g_{0}=\left(g_{0}\left(x_{1}\right), \ldots, g_{0}\left(x_{n}\right)\right)^{\prime}$,

$$
\hat{g}(x)-g_{0}(x)=e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W\left(Y-g_{0}\right)+e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W g_{0}-g_{0}(x)
$$

Then for $\Sigma=\operatorname{diag}\left(\sigma^{2}\left(x_{1}\right), \ldots, \sigma^{2}\left(x_{n}\right)\right)$,

$$
\begin{aligned}
E\left[\left(\hat{g}(x)-g_{0}(x)\right)^{2} \mid x_{1}, \ldots, x_{n}\right]= & e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W \Sigma W X\left(X^{\prime} W X\right)^{-1} e_{1} \\
& +\left[e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W g_{0}-g_{0}(x)\right]^{2}
\end{aligned}
$$

An asymptotic approximation to MSE is obtained by taking the limit as n grows. Note that we have

$$
n^{-1} h^{-j} S_{j}=\frac{1}{n} \sum_{i=1}^{n} K_{h}\left(x-x_{i}\right)\left[\left(x-x_{i}\right) / h\right]^{j}
$$

Then, by the change of variables $u=\left(x-x_{i}\right) / h$,

$$
E\left[n^{-1} h^{-j} S_{j}\right]=E\left[K_{h}\left(x-x_{i}\right)\left(\left(x-x_{i}\right) / h\right)^{j}\right]=\int K(u) u^{j} f_{0}(x-h u) d u=\mu_{j} f_{0}(x)+o(1)
$$

for $\mu_{j}=\int K(u) u^{j} d u$ and $h \longrightarrow 0$. Also,

$$
\begin{aligned}
\operatorname{var}\left(n^{-1} h^{-j} S_{j}\right) & \leq n^{-1} E\left[K_{h}\left(x-x_{i}\right)^{2}\left(\left(x-x_{i}\right) / h\right)^{2 j}\right] \leq n^{-1} h^{-1} \int K(u)^{2} u^{2 j} f_{0}(x-h u) d u \\
& \leq C n^{-1} h^{-1} \longrightarrow 0
\end{aligned}
$$

for $n h \longrightarrow \infty$. Therefore, for $h \rightarrow 0$ and $n h \rightarrow \infty$

$$
n^{-1} h^{-j} S_{j}=\mu_{j} f_{0}(x)+o_{p}(1)
$$

Now let $H=\operatorname{diag}(1, h)$. Then by $\mu_{0}=1$ and $\mu_{1}=0$ we have

$$
n^{-1} H^{-1} X^{\prime} W X H^{-1}=n^{-1}\left[\begin{array}{cc}
S_{0} & h^{-1} S_{1} \\
h^{-1} S_{1} & h^{-2} S_{2}
\end{array}\right]=f_{0}(x)\left[\begin{array}{cc}
1 & 0 \\
0 & \mu_{2}
\end{array}\right]+o_{p}(1)
$$

Next let $\nu_{j}=\int K(u)^{2} u^{j} d u$. Then by a similar argument we have

$$
h \cdot \frac{1}{n} \sum_{i=1}^{n} K_{h}\left(x-x_{i}\right)^{2}\left[\left(x-x_{i}\right) / h\right]^{j} \sigma^{2}\left(x_{i}\right)=\nu_{j} f_{0}(x) \sigma^{2}(x)+o_{p}(1) .
$$

It follows by $\nu_{1}=0$ that

$$
n^{-1} h H^{-1} X^{\prime} W \Sigma W X H^{-1}=f_{0}(x) \sigma^{2}(x)\left[\begin{array}{cc}
\nu_{0} & 0 \\
0 & \nu_{2}
\end{array}\right]+o_{p}(1)
$$

Then we have, for the variance term, by $H^{-1} e_{1}=e_{1}$,

$$
\begin{aligned}
& e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W \Sigma W X\left(X^{\prime} W X\right)^{-1} e_{1} \\
= & n^{-1} h^{-1} e_{1}^{\prime} H^{-1}\left(\frac{H^{-1} X^{\prime} W X H^{-1}}{n}\right)^{-1} \frac{h H^{-1} X^{\prime} W \Sigma W X H^{-1}}{n}\left(\frac{H^{-1} X^{\prime} W X H^{-1}}{n}\right)^{-1} H^{-1} e_{1} \\
= & n^{-1} h^{-1}\left[\left(e_{1}^{\prime}\left[\begin{array}{cc}
1 & 0 \\
0 & \mu_{2}
\end{array}\right]^{-1}\left[\begin{array}{cc}
\nu_{0} & \nu_{1} \\
\nu_{1} & \nu_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \mu_{2}
\end{array}\right]^{-1} e_{1}\right) \frac{\sigma^{2}(x)}{f(x)}+o_{p}(1)\right] .
\end{aligned}
$$

Assuming that $\mu_{1}=0$ as usual for a symmetric kernel we obtain

$$
e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W \Sigma W X\left(X^{\prime} W X\right)^{-1} e_{1}=n^{-1} h^{-1}\left(\nu_{0} \frac{\sigma^{2}(x)}{f(x)}+o_{p}(1)\right) .
$$

For the bias consider an expansion

$$
g\left(x_{i}\right)=g_{0}(x)+g_{0}^{\prime}(x)\left(x_{i}-x\right)+\frac{1}{2} g_{0}^{\prime \prime}(x)\left(x_{i}-x\right)^{2}+\frac{1}{6} g_{0}^{\prime \prime \prime}\left(\bar{x}_{i}\right)\left(x_{i}-x\right)^{3} .
$$

Let $r_{i}=g_{0}\left(x_{i}\right)-g_{0}(x)-\left[d g_{0}(x) / d x\right]\left(x_{i}-x\right)$. Then by the form of X we have

$$
g=\left(g_{0}\left(x_{1}\right), \ldots, g_{0}\left(x_{n}\right)\right)^{\prime}=g_{0}(x) W e_{1}-g_{0}^{\prime}(x) W e_{2}+r
$$

It follows by $e_{1}^{\prime} e_{2}=0$ that the bias term is

$$
\begin{gathered}
e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W g-g_{0}(x)=e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W X e_{1} g_{0}(x)-g_{0}(x) \\
+e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W X e_{2} g_{0}^{\prime}(x)+e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W r=e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W r
\end{gathered}
$$

Recall that

$$
n^{-1} h^{-j} S_{j}=\mu_{j} f_{0}(x)+o_{p}(1)
$$

Therefore

$$
\begin{aligned}
& n^{-1} h^{-2} H^{-1} X^{\prime} W\left(\left(x-X_{1}\right)^{2}, \ldots,\left(x-X_{n}\right)^{2}\right)^{\prime} \frac{1}{2} \\
= & \left(\begin{array}{lll}
n^{-1} & h^{-2} & S_{2} \\
n^{-1} & h^{-3} & S_{3}
\end{array}\right) \frac{1}{2} g_{0}^{\prime \prime}(x)=f_{0}(x)\binom{\mu_{2}}{\mu_{3}} \frac{1}{2} g_{0}^{\prime \prime}(x)+o_{p}(1) .
\end{aligned}
$$

Also, by $g_{0}^{\prime \prime \prime}\left(\bar{x}_{i}\right)$ bounded

$$
\begin{aligned}
& \left\|n^{-1} h^{-2} H^{-1} X^{\prime} W\left(\left(x-x_{1}\right)^{3} g_{0}^{\prime \prime \prime}\left(\bar{x}_{1}\right), \ldots,\left(x-x_{n}\right)^{3} g_{0}^{\prime \prime \prime}\left(\bar{x}_{n}\right)\right)^{\prime}\right\| \\
\leq & C \max \left\{n^{-1} h^{-2} \sum_{i} K_{h}\left(x-x_{i}\right)\left|x-x_{i}\right|^{3}, n^{-1} h^{-2} S_{4}\right\} \longrightarrow 0
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
e_{1}^{\prime}\left(X^{\prime} W X\right)^{-1} X^{\prime} W r & =h^{2} e_{1}^{\prime} H^{-1} \frac{\left(H^{-1} X^{\prime} W X H^{-1}\right)^{-1}}{n} \cdot \frac{h^{-2} H^{-1} X^{\prime} W r}{n} \\
& =\frac{h^{2}}{2} g_{0}^{\prime \prime}(x) e_{1}^{\prime}\left(\begin{array}{cc}
1 & 0 \\
0 & \mu_{2}
\end{array}\right)^{-1}\binom{\mu_{2}}{\mu_{3}}=\frac{h^{2}}{2} g_{0}^{\prime \prime}(x) \mu_{2}
\end{aligned}
$$

Exercise: Apply analogous calculation to show kernel regression bias is

$$
\mu_{2} h^{2}\left(\frac{1}{2} g_{0}^{\prime \prime}(x)+g_{0}^{\prime}(x) \frac{f_{0}^{\prime}(x)}{f_{0}(x)}\right)
$$

Notice bias is zero if function is linear.
Combining the bias and variance expression, we have the following form for asymptotic MSE:

$$
\frac{1}{n h} \nu_{0} \frac{\sigma^{2}(x)}{f_{0}(x)}+\frac{h^{4}}{4} g_{0}^{\prime \prime}(x)^{2} \mu_{2}^{2}
$$

In constrast, the kernel MSE is

$$
\frac{1}{n h} \nu_{0} \frac{\sigma^{2}(x)}{f_{0}(x)}+\frac{h^{4}}{4}\left[g_{0}^{\prime \prime}(x)+2 g_{0}^{\prime}(x) \frac{f_{0}^{\prime}(x)}{f_{0}(x)}\right]^{2} \mu_{2}^{2}
$$

Bias will be much bigger near boundary of the support where $f_{0}^{\prime}(x) / f_{0}(x)$ is large. For example, if $f_{0}(x)$ is approximately x^{α} for $x>0$ near zero, then $f_{0}^{\prime}(x) / f_{0}(x)$ grows like $1 / x$ as x gets close to zero. Thus, locally linear has smaller boundary bias. Also, locally linear has no bias if $g_{0}(x)$ is linear but kernel obviously does.

Simple method is to take expected value of MSE.

