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1 A portfolio problem

To set the stage, consider a simple �nite horizon problem.
A risk averse agent can invest in two assets:

� riskless asset (bond) pays gross return 1

� risky asset (stock) pays gross return R: random variable with support�
R;R

�
, R > 0

Preferences: expected utility

E [u (c)] :

Agent has wealth w needs to choose how much to invest in stocks, s, and how
much in bonds, b.

b+ s = w:

Suppose agent cannot �short�the stock, s � 0, and cannot borrow, b � 0.
One period problem. Random consumption stream

c = Rs+ b:

The problem to solve is:

max
s2[0;w]

E [u (Rs+ w � s)] :

Standard concave problem. If interior solution then

E [(R� 1)u0 (Rs+ w � s)] = 0:

Do it for two periods, t = 0; 1; 2: (At t = 0; 1 agent makes investment deci-
sions, at t = 2 agent just consumes). In periods t = 1; 2 the random return on
stocks Rt is drawn independently from the same distribution.
Choose how much to invest in the �rst period s0; b0 and how much to in-

vest in the second period, conditional on what happened in the �rst period,
s1 (R1) ; b1 (R1). The problem to solve is:

max
s0�0;b0�0

s1(R1)�0;b1(R1)�0

E [u (c (R1; R2))]
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subject to the constraints

b0 + s0 = w0

w1 (R1) = R1s0 + b0

b1 (R1) + s1 (R1) = w1 (R1)

c (R1; R2) = R2s1 (R1) + b1 (R1)

Do it for T periods, it gets complicated as the investment decisions are
conditioned on all past realizations of R.

Idea: de�ne the best you can do from period t on, then go backward.
Important step: choose the right state variable. A state variable is the right

summary for all that happened before t.
Here: wealth wt.
Let�s go back to two period example. Suppose you enter period 1 with any

possible wealth w. The best you can do gives you expected utility

V1 (w) = max
s2[0;w]

E [u (Rs+ w � s)] :

Now go back to t = 0 and solve

max
s2[0;w0]

E [V1 (Rs+ w0 � s)] :

Assume preferences are:

u (c) � 1

1�  c
1�

V1 (w) = max
s2[0;w]

E

�
1

1�  (Rs+ w � s)
1�

�
:

We can now make the change of variable

� = s=w,

which is the fraction of wealth invested in stocks. Then

V1 (w) = max
�2[0;1]

E

�
1

1�  (R� + 1� �)
1�

w1�
�

=

�
max
�2[0;1]

E

�
1

1�  (R� + 1� �)
1�

��
w1�

=
�

1� w
1�

where

� � (1� ) max
�2[0;1]

E

�
1

1�  (R� + 1� �)
1�

�
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(it�s better to be careful and not simplify the two (1� ) in this expression,
because (1� ) may be negative and then the maximization problem would go
upside down!)
Optimal allocation is to invest a constant fraction �� in stocks, in both

periods.
But this is true also for any (�nite) horizon T . The value function for the

T -period problem is:

Vt (w) =
�T�t�1

1�  w
1� :

The optimal policy is to invest a fraction �� of wealth in stocks each period.

2 An optimal saving problem

We now turn to a non-stochastic problem. The main di¤erences with the previ-
ous example are that consumption happens in all periods, there is discounting,
and the risk free rate is not zero.
Objective:

TX
t=0

�tu (ct)

Flow constraint:
at = (1 + r) at�1 + y � ct:

Terminal condition:
aT � 0:

State variable: at�1

Vt (at�1) = max
TX
j=t

�ju (ct+j) s:t:...

Recursive approach: start from

VT (a) = u ((1 + r) a+ y)

and go back from here.
Going to in�nite horizon objective is

1X
t=0

�tu (ct)

now the problem is independent of how far we are from T : stationarity. We can
hope to de�ne a stationary value function

V (at) = max
1X
j=t

�ju (ct+j) s:t:...

and attack it with the right recursive methods.
This is the class of problems we will study now, with �ve essential ingredients:

in�nite horizon, discrete time, deterministic setup, discounting, stationarity.
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3 A general recursive problem

We will work now on a general deterministic problem.
Ingredients:

� In�nite horizon

� Discrete time

� Discounting at rate � 2 (0; 1)

� State variable xt in some set X

� Constraint correspondence � : X ! X

xt+1 2 � (xt)

� Payo¤ function
F (xt; xt+1)

de�ned for all xt 2 X and all xt+1 2 � (xt). In other words, with A �
f(x; y) 2 X �X : y 2 � (x)g, we have a function F : A! R.

A plan is a sequence fxtg1t=0.
A feasible plan from x0, is a plan with xt+1 2 � (xt). Set of feasible plans

denoted �(x0).

Objective is to �nd a sequence fxtg1t=0 that maximizes the discounted sum
of payo¤s

1X
t=0

�tF (xt; xt+1)

This needs to be de�ned for all feasible plans.
An optimal plan from x0 is a plan that achieves the maximum.
Assumption 1. � (x) non-empty 8x 2 X
Assumption 2.

lim
T!1

TX
t=0

�tF (xt; xt+1) exists

for all feasible plans from any initial x0 2 X.

4 Principle of Optimality

On the one hand we have the sequence problem (SP):

V �(x0) � max
1X
t=0

�tF (xt; xt+1)
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subject to
xt+1 2 �(xt) t = 0; 1; :::

and x0 given. Or more compactly, V �(x0) = maxx2�(x0) u(x): Solving this
problem is �nding optimal plans x� that attain the value V � for all initial
conditions.
On the other hand we have the Bellman equation

V (x) = max
x2�(x)

fF (x; y) + �V (y)g;

which is a functional equation (FE). Solving this problem is �nding a V that
satis�es this equation.
De�ne also the policy correspondence

G(x) � arg max
x2�(x)

fF (x; y) + �V �(y)g

(note: this is the maximum on the right hand side of the Bellman equation but
using the speci�c function V = V �):
The principle of optimality is about the relationship between these two prob-

lems, about the relationship between V solving FE and V �de�ned by SP. It is
also about the relationship between optimal plans x� for SP and plans generated
using the policy correspondence G.

Theorem 4.2. Suppose V �(x) is well de�ned for all x 2 X then V � satis�es
the Bellman equation:

V �(x) = max
y2�(x)

fF (x; y) + �V �(y)g:

Proof. Take any x0 2 X. Let fx�t g1t=0 be an optimal plan from x0. By
de�nition

V �(x0) = F (x0; x
�
1)+�

1X
t=1

�t�1F (x�t ; x
�
t+1) � F (x0; x1)+�

1X
t=1

�t�1F (xt; xt+1)

for all plans fxtg1t=0 which are feasible from x0. Taking any x1 2 � (x0) let
fxtg1t=1 be an optimal plan from x1 so

V � (x1) =

1X
t=1

�t�1F (xt; xt+1):

Then we have

F (x0; x
�
1) + �

1X
t=1

�t�1F (x�t ; x
�
t+1) � F (x0; x1) + �V � (x1)

for all x1 2 � (x0). Using this at x1 = x�1 we have
1X
t=1

�t�1F (x�t ; x
�
t+1) � V � (x�1) ;
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but since fx�t g
1
t=1 is a feasible plan starting at x

�
1 this must hold as an equality.

So we have

F (x0; x
�
1) + �V

� (x�1) � F (x0; x1) + �V � (x1) for all x1 2 � (x0) :

Note: In SLP they proceed without assuming that a maximum exists; with
SP de�ned by a supremum. This is preferable. The argument is very similar.
We have established that V = V � solves the Bellman equation. Next we

provide a result showing that optimal plans must be generated by the policy
correspondence.

Theorem 4.4. Suppose V �(x) is well de�ned for all x 2 X. Suppose the plan
fx�t g1t=0 is optimal from x0, then

V �(x�t ) = F (x
�
t ; x

�
t+1) + �V

�(x�t+1) t = 0; 1; :::

Proof. Use same calculations as for Theorem 4.2 and apply induction. We
showed that

V �(x0) = F (x0; x
�
1) + �V

�(x�1)

and we showed that fx�t g
1
t=1 is an optimal plan from x

�
1. Since fx�t g

1
t=1 is optimal

from x�1, we can proceed along the same reasoning to show that

V �(x�1) = F (x
�
1; x

�
2) + �V

�(x�2)

and that fx�t g
1
t=2 is optimal from x�2. Continuing in this way establishes the

result for all t = 0; 1; :::
This theorem implies that an optimal plan satis�es x�t+1 2 G (x�t ). Is the

reverse always true? Is a plan generated by the policy function necessarily
optimal? No, there are counterexamples as the next example illustrates.
Example (from SLP). Take

F (x; y) = x� �y

X = fx 2 R andx � 0g

�(x) = [0; ��1x]:

Economically, this corresponds to a savings problem for a consumer with initial
wealth x0 that has linear utility over consumption ct = xt � �xt+1 and faces a
market gross interest rate R = ��1: Intuitively, the consumer is indi¤erent to
many plans for consumption. In particular, consuming immediately (xt = 0 for
t = 1; 2; :::) is optimal and V �(x0) = x0: Consuming everything in the second
period is also optimal (x1 = ��1x0 and xt = 0 for t = 2; 3; :::) which involves
maximal savings in the very �rst period. Many other plans are optimal. This
multiplicity of solutions is also re�ected in policy correspondence which is

G(x) = arg max
y2�(x)

fx� �y + �yg = �(x):
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However, the path xt = �
�tx0 that is generated from G by setting xt+1 = �

�1xt
for all t = 0; 1; :::is clearly not optimal since then ct = F (xt; xt+1) = 0 for all
t = 0; 1; :::and u(x) = 0 < V �(x0) = x0: The consumer is willing to postpone
for any number of periods, but not forever.
We need an extra condition to rule out plans that essentially never deliver.

The condition turns out to be a limiting condition that is much like a �No-Ponzi�
condition for values V �(xt) along the proposed path.
We now strengthen the previous result with such a condition and provide

the converse.

Theorems 4.4 and 4.5 (Ivan Werning�s version). A feasible plan
fx�t g

1
t=0 is optimal if and only if

V �(x�t ) = F (x
�
t ; x

�
t+1) + �V

�(x�t+1) for t = 0; 1; :::

and
lim
t!1

�tV �(x�t ) = 0:

Proof. (Necessity) We already showed the �rst part. We need only show the
limit condition. Substituting V �(x�t ) = F (x

�
t ; x

�
t+1) + �V

�(x�t+1) repeatedly we
arrive at

V �(x0) =
TX
t=0

F (x�t ; x
�
t+1) + �

T+1V �(x�T+1):

Notice that the limit limT!1
PT

t=0 F (x
�
t ; x

�
t+1) exists and is equal to V

�(x0).
Therefore, the limit limt!1 �

tV �(x�t ) must exist and be equal to zero.
(Su¢ ciency) The converse is true by exactly the same calculations: since

we have that limt!1 �
tV �(x�t ) = 0 it follows that

PT
t=0 F (x

�
t ; x

�
t+1) has a well

de�ned limit, equal to V �(x0). This also show that fx�t g
1
t=0 is optimal.

Now we want to prove that a solution to FE is V �: The problem is that
this is generally not always the case. There may be other solutions as the next
example shows.
Example. Take

F (x; y) = x� �y

X = R

and set �(x) = f���1xg if x > 0 and �(x) = f��1xg otherwise. Thus,
there is only one feasible plan for any x0 and V �(x0) = maxf2x; 0g. Note
that �tV �(xt) ! 0 for the only feasible path. But what about the Bellman
equation? There is another solution with V (x) = x. Note that for this solution
it is not true that lim�tV (xt) = �x0 for all feasible paths.
The previous example suggests that other solutions do not satisfy a limiting

condition that V � does satisfy. We thus strengthen the requirements.
Theorem 4.3 (Ivan�s version). Suppose V is a �nite valued function that
solves FE. Suppose for each x0 2 X there exists a feasible plan fx�t g

1
t=0 with
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V (x�t ) = F (x
�
t ; x

�
t+1)+�V (x

�
t+1) for t = 0; 1; 2; ::: and lim�

tV (x�t ) = 0. Suppose
also that

lim sup
t!1

�tV (xt) � 0

for all feasible plans with
P1

t=0 �
tF (xt; xt+1) > �1. Then V = V �de�ned

from the SP.
Proof. We want to show that for any x0 2 X

V (x0) �
1X
t=0

�tF (xt; xt+1)

for all plans that are feasible from x0. Take any x0 2 X and �nd a plan fx�t g
1
t=0

that satis�es the theorem�s hypothesis. The inequality above is immediately
true if

P1
t=0 �

tF (xt; xt+1) = �1. Otherwise, iterating on the Bellman equation
gives us

V (x0) =
T�1X
t=0

�tF (x�t ; x
�
t+1) + �

TV (x�T ) �
T�1X
t=0

�tF (xt; xt+1) + �
TV (xT ):

Taking the supremum limit on both sides gives

V (x0) =
1X
t=0

�tF (x�t ; x
�
t+1) �

1X
t=0

�tF (xt; xt+1) + lim sup
t!1

�TV (xT )

which gives the desired inequality because lim supt!1 �
TV (xT ) � 0. This

completes the proof since x0 was arbitrary.
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