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1 Showing that T is a contraction

1.1 Blackwell�s su¢ cient conditions

One important step in applying our argument to the map T is to show that T
is a contraction.
Let C (X) be the space of bounded functions on X let k:k be the sup norm.
Take any map

T : C (X)! C (X) :

(This does not need to come from any optimization problem.)
Assume:

1. T is monotone, if f; g 2 C (X) and f (x) � g (x) for all x 2 X, then
Tf (x) � Tg (x) for all x 2 X.

2. T satis�es a �discounting�property: there is a � 2 (0; 1) such that for any
a � 0 and any g 2 C (X) the function f (x) = g (x) + a satis�es

T (f (x)� g (x)) � �a:

Then T is a contraction.
To prove this let

a = sup
x2X

jf (x)� g (x)j = kf � gk :

Suppose without loss of generality that

sup
x2X

jTf (x)� Tg (x)j = sup
x2X

(Tf (x)� Tg (x))

(if this does not hold then it must be

sup
x2X

jTf (x)� Tg (x)j = sup
x2X

(Tg (x)� Tf (x))

and the same argument works with the roles of f and g reversed). Then let
h (x) = g (x) + a. We have h (x) � f (x) for all x by de�nition. So

Tf (x)� Tg (x) � Th (x)� Tg (x)
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from monotonicity and
Th (x)� Tg (x) � �a

from discounting. Combining them we have

Tf (x)� Tg (x) � �a

which implies

kTf � Tgk = sup
x2X

jTf (x)� Tg (x)j = sup
x2X

(Tf (x)� Tg (x)) � �a = � kf � gk :

1.2 Applying Blackwell�s conditions

Now we go back to our dynamic programming problem and show that T , de�ned
as

Tf (x) = max
y2�(x)

F (x; y) + �f (y)

is indeed a contraction. (Here we assume we already know that T maps bounded
continuous functions into bounded continuous functions).
To apply Blackwell�s theorem we need to check conditions 1 and 2.

1. To see that T is monotone suppose f � g. Take any x 2 X and suppose

y0 2 arg max
y2�(x)

F (x; y) + �g (y) :

Then

Tf (x) = max
y2�(x)

F (x; y) + �f (y) �

� F (x; y0) + �f (y0) �
� F (x; y0) + �g (y0) = Tg (x) :

Since this holds for all x 2 X, we are done.

2. So see that T satis�es discounting notice that for any a � 0 is f (x) =
g (x) + a

Tf (x) = max
y2�(x)

F (x; y) + � (g (y) + a) =

=

�
max
y2�(x)

F (x; y) + �g (y)

�
+ �a

= Tg (x) + �a:

So discounting applies (with � = �).
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2 Inductive arguments

Using induction we can prove properties of the value function.
The general idea is to use the fact that our �xed point V is the limit of Tnf0.

So if we start from a
f0 2 D

(f0 satis�es D) and can prove that

Tf 2 D if f 2 D

(T preserves property D), then provided that D is a closed subset of our original
metric space C (X) then

V 2 D:

2.1 Proving that V is monotone

Make all assumptions of bounded dynamic programming plus:

� F (x; y) is increasing in its �rst argument;

� � (x) is monotone in the sense that

� (x0) � � (x00) if x00 � x0:

Then V (x) is increasing in x.

Proof. We need to prove our induction step:

Tf is increasing if f is increasing.

We actually prove a stronger version:

Tf is increasing if f is non-decreasing. (1)

Pick an x0; x00 2 X with x00 � x0 (with at least one >). Choose a

y0 2 arg max
y2�(x0)

F (x0; y) + �f (y) :

Then y0 2 � (x00) by monotonicity of �, so

Tf (x00) = max
y2�(x00)

F (x00; y) + �f (y) � F (x00; y0) + �f (y) >

> F (x0; y0) + �f (y) = Tf (x0) ;

where the last inequality comes from the fact that F is increasing. The space
of strictly increasing functions is not closed, but the space of non-decreasing
functions is closed (and is the closure of the space of increasing functions). So
since V is the limit of Tnf0, we have V non-decreasing. Moreover

V = TV

and V is non-decreasing. So (1) implies that V is increasing. QED.
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2.2 Proving that V is concave

Same idea: move in the space of concave functions.
Now the extra assumptions we need are:

� F (x; y) is concave;

� � is a convex in the sense that if y0 2 � (x0) and y00 2 � (x00) then

�y0 + (1� �) y00 2 � (�x0 + (1� �)x00) for all � 2 [0; 1] :

Then V (x) is concave.
Proof. Again we need our inductive step. Suppose f (x) is concave. Take

any x0; x00 2 X and

y0 2 arg max
y2�(x0)

F (x0; y) + �f (y)

y00 2 arg max
y2�(x00)

F (x00; y) + �f (y) :

Take any � 2 [0; 1] and let x000 = �x0 + (1� �)x00. Then

y000 = �y0 + (1� �) y00 2 � (x000)

by convexity of �. So

max
y2�(x000)

F (x000; y) + �f (y) � F (x000; y000) + �f (y000) �

� (F (x0; y0) + �f (y0)) + (1� �) (F (x00; y00) + �f (y00))

where the last inequality follows from the concavity of F and f . So we have

Tf (x000) � �Tf (x0) + (1� �)Tf (x00) ;

showing that Tf is concave. Since the space of concave functions is closed, we
can start at any f0 concave and we end up at V concave. Again, if needed
we can strengthen to strict concavity by making an extra step (like going from
weak to strong monotonicity). QED
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