14.451 Lecture Notes 3

Guido Lorenzoni

Fall 2009

1 Showing that T is a contraction

1.1 Blackwell's sufficient conditions

One important step in applying our argument to the map T is to show that T is a contraction.

Let $C(X)$ be the space of bounded functions on X let $\|$.$\| be the sup norm.$
Take any map

$$
T: C(X) \rightarrow C(X) .
$$

(This does not need to come from any optimization problem.)
Assume:

1. T is monotone, if $f, g \in C(X)$ and $f(x) \geq g(x)$ for all $x \in X$, then $T f(x) \geq T g(x)$ for all $x \in X$.
2. T satisfies a "discounting" property: there is a $\delta \in(0,1)$ such that for any $a \geq 0$ and any $g \in C(X)$ the function $f(x)=g(x)+a$ satisfies

$$
T(f(x)-g(x)) \leq \delta a .
$$

Then T is a contraction.
To prove this let

$$
a=\sup _{x \in X}|f(x)-g(x)|=\|f-g\| .
$$

Suppose without loss of generality that

$$
\sup _{x \in X}|T f(x)-T g(x)|=\sup _{x \in X}(T f(x)-T g(x))
$$

(if this does not hold then it must be

$$
\sup _{x \in X}|T f(x)-T g(x)|=\sup _{x \in X}(T g(x)-T f(x))
$$

and the same argument works with the roles of f and g reversed). Then let $h(x)=g(x)+a$. We have $h(x) \geq f(x)$ for all x by definition. So

$$
T f(x)-T g(x) \leq T h(x)-T g(x)
$$

from monotonicity and

$$
T h(x)-T g(x) \leq \delta a
$$

from discounting. Combining them we have

$$
T f(x)-T g(x) \leq \delta a
$$

which implies
$\|T f-T g\|=\sup _{x \in X}|T f(x)-T g(x)|=\sup _{x \in X}(T f(x)-T g(x)) \leq \delta a=\delta\|f-g\|$.

1.2 Applying Blackwell's conditions

Now we go back to our dynamic programming problem and show that T, defined as

$$
T f(x)=\max _{y \in \Gamma(x)} F(x, y)+\beta f(y)
$$

is indeed a contraction. (Here we assume we already know that T maps bounded continuous functions into bounded continuous functions).

To apply Blackwell's theorem we need to check conditions 1 and 2.

1. To see that T is monotone suppose $f \geq g$. Take any $x \in X$ and suppose

$$
y^{\prime} \in \arg \max _{y \in \Gamma(x)} F(x, y)+\beta g(y)
$$

Then

$$
\begin{aligned}
T f(x) & =\max _{y \in \Gamma(x)} F(x, y)+\beta f(y) \geq \\
& \geq F\left(x, y^{\prime}\right)+\beta f\left(y^{\prime}\right) \geq \\
& \geq F\left(x, y^{\prime}\right)+\beta g\left(y^{\prime}\right)=\operatorname{Tg}(x) .
\end{aligned}
$$

Since this holds for all $x \in X$, we are done.
2. So see that T satisfies discounting notice that for any $a \geq 0$ is $f(x)=$ $g(x)+a$

$$
\begin{aligned}
T f(x) & =\max _{y \in \Gamma(x)} F(x, y)+\beta(g(y)+a)= \\
& =\left\{\max _{y \in \Gamma(x)} F(x, y)+\beta g(y)\right\}+\beta a \\
& =T g(x)+\beta a
\end{aligned}
$$

So discounting applies (with $\delta=\beta$).

2 Inductive arguments

Using induction we can prove properties of the value function.
The general idea is to use the fact that our fixed point V is the limit of $T^{n} f_{0}$. So if we start from a

$$
f_{0} \in D
$$

(f_{0} satisfies $\left.D\right)$ and can prove that

$$
T f \in D \text { if } f \in D
$$

(T preserves property D), then provided that D is a closed subset of our original metric space $C(X)$ then

$$
V \in D
$$

2.1 Proving that V is monotone

Make all assumptions of bounded dynamic programming plus:

- $F(x, y)$ is increasing in its first argument;
- $\Gamma(x)$ is monotone in the sense that

$$
\Gamma\left(x^{\prime}\right) \subset \Gamma\left(x^{\prime \prime}\right) \text { if } x^{\prime \prime} \geq x^{\prime}
$$

Then $V(x)$ is increasing in x.
Proof. We need to prove our induction step:

$$
T f \text { is increasing if } f \text { is increasing. }
$$

We actually prove a stronger version:
$T f$ is increasing if f is non-decreasing.
Pick an $x^{\prime}, x^{\prime \prime} \in X$ with $x^{\prime \prime} \geq x^{\prime}$ (with at least one $>$). Choose a

$$
y^{\prime} \in \arg \max _{y \in \Gamma\left(x^{\prime}\right)} F\left(x^{\prime}, y\right)+\beta f(y)
$$

Then $y^{\prime} \in \Gamma\left(x^{\prime \prime}\right)$ by monotonicity of Γ, so

$$
\begin{aligned}
T f\left(x^{\prime \prime}\right) & =\max _{y \in \Gamma\left(x^{\prime \prime}\right)} F\left(x^{\prime \prime}, y\right)+\beta f(y) \geq F\left(x^{\prime \prime}, y^{\prime}\right)+\beta f(y)> \\
& >F\left(x^{\prime}, y^{\prime}\right)+\beta f(y)=T f\left(x^{\prime}\right)
\end{aligned}
$$

where the last inequality comes from the fact that F is increasing. The space of strictly increasing functions is not closed, but the space of non-decreasing functions is closed (and is the closure of the space of increasing functions). So since V is the limit of $T^{n} f_{0}$, we have V non-decreasing. Moreover

$$
V=T V
$$

and V is non-decreasing. So (1) implies that V is increasing. QED.

2.2 Proving that V is concave

Same idea: move in the space of concave functions.
Now the extra assumptions we need are:

- $F(x, y)$ is concave;
- Γ is a convex in the sense that if $y^{\prime} \in \Gamma\left(x^{\prime}\right)$ and $y^{\prime \prime} \in \Gamma\left(x^{\prime \prime}\right)$ then

$$
\alpha y^{\prime}+(1-\alpha) y^{\prime \prime} \in \Gamma\left(\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}\right) \text { for all } \alpha \in[0,1] .
$$

Then $V(x)$ is concave.
Proof. Again we need our inductive step. Suppose $f(x)$ is concave. Take any $x^{\prime}, x^{\prime \prime} \in X$ and

$$
\begin{aligned}
y^{\prime} & \in \arg \max _{y \in \Gamma\left(x^{\prime}\right)} F\left(x^{\prime}, y\right)+\beta f(y) \\
y^{\prime \prime} & \in \arg \max _{y \in \Gamma\left(x^{\prime \prime}\right)} F\left(x^{\prime \prime}, y\right)+\beta f(y) .
\end{aligned}
$$

Take any $\alpha \in[0,1]$ and let $x^{\prime \prime \prime}=\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$. Then

$$
y^{\prime \prime \prime}=\alpha y^{\prime}+(1-\alpha) y^{\prime \prime} \in \Gamma\left(x^{\prime \prime \prime}\right)
$$

by convexity of Γ. So

$$
\begin{aligned}
& \max _{y \in \Gamma\left(x^{\prime \prime \prime}\right)} F\left(x^{\prime \prime \prime}, y\right)+\beta f(y) \geq F\left(x^{\prime \prime \prime}, y^{\prime \prime \prime}\right)+\beta f\left(y^{\prime \prime \prime}\right) \geq \\
& \alpha\left(F\left(x^{\prime}, y^{\prime}\right)+\beta f\left(y^{\prime}\right)\right)+(1-\alpha)\left(F\left(x^{\prime \prime}, y^{\prime \prime}\right)+\beta f\left(y^{\prime \prime}\right)\right)
\end{aligned}
$$

where the last inequality follows from the concavity of F and f. So we have

$$
T f\left(x^{\prime \prime \prime}\right) \geq \alpha T f\left(x^{\prime}\right)+(1-\alpha) T f\left(x^{\prime \prime}\right)
$$

showing that $T f$ is concave. Since the space of concave functions is closed, we can start at any f_{0} concave and we end up at V concave. Again, if needed we can strengthen to strict concavity by making an extra step (like going from weak to strong monotonicity). QED

MIT OpenCourseWare
http://ocw.mit.edu

14.451 Dynamic Optimization Methods with Applications

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

