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1 Example: optimal growth model

1.1 Characterizing the policy

We introduce the neoclassical optimal growth model and see how to derive
properties of optimal investment and consumption from what we learned so far.
Identify x with the current capital stock, let

f (k) = F (k; 1) + (1� �) k

which is output plus the undepreciated part of the capital stock (NB: the F (k; 1)
here is not the F (x; y) in general notation, but it�s ok because we�ll use f (k)
from now on).
Let U be the utility function. We begin with an assumption that ensures

consumers never throw away consumption goods:

Assumption 1. The function U (c) is increasing.

Then they consume f (k)� k0 and the per-period payo¤ is

U (f (k)� k0) :

We will assume throughout that the following value function is well de�ned for
all k0 > 0:

V (k0) � max
1X
t=0

�tU (f (kt)� kt+1)

0 � kt+1 � f (kt) ; k0 given.

(V (0)may not be well de�ned as a max and limk!0+ V (k) = �1 if limc!0+ U (c) =
�1).
We then can use the principle of optimality (in one direction) to argue that

V must satisfy the Bellman equation

V (k) = max
0�k0�f(k)

U (f (k)� k0) + �V (k0) : (FE)
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Assumption 2. The functions f (k) and U (c) are continuous, di¤eren-
tiable on the interior of their domain and strictly concave.

The domain of f is always R+. The domain of U can be R+ or R++. That
is, in some cases we can have utility functions not de�ned for c = 0, with
U (c)! �1 as c! 0 (e.g., when U (c) = log c).
From concavity we have the following:

Claim 1 V (k) is strictly concave.

Proof. This can be proved directly from the sequence problem. Take two initial
conditions k0 and k00 and check that the sequence f�kt + (1� �) k0tg is feasible
and yields utility higher than the weighted average of fktg and fk0tg.
We now have some useful facts on concave functions (Fact 1 we have seen

before but it�s useful to remember).
Fact 1. If h (x) is a concave function on a convex set X � Rn, then for each

x0 2 X the function h has at least one subgradient p such that

h (x)� h (x0) � p � (x� x0) for all x 2 X:

The set of all possible subgradients of h at x0 is called the subdi¤erential of
h and we denote with @h (x0).
Fact 2. If h is a function of one variable (i.e., X is a convex subset of R )

then for each x the subgradient @h (x) is a closed interval and is decreasing in
x in the following sense:

if p 2 @h (x) and p0 2 @h (x0) then p0 � p if x0 > x;

and the mapping @h (x) is upper hemicontinuous.
Fact 3. If h has a maximum at x0 2 X then 0 2 @h (x0).
Fact 3 is a generalization of the fact that the derivative of a function dif-

ferentiable at a local maximum is zero (and it includes the possibility of corner
solutions).
But then using the last fact we can characterize the problem (FE) as follows:

if the solution is interior we have

U 0 (f (k)� k0) 2 �@V (k0) : (1)

We now make an assumption to rule out the corner at zero consumption and
to get a unique (and continuous) policy function k0 = g (k).

Assumption 3. The utility function satis�es the Inada condition

lim
c!0

U 0 (c) =1:

A graphical argument shows that there is a unique k0 < f (k) which satis�es
(1). This is our policy function g (k).
A graphical argument also shows the following:
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Claim 2 The policy g (k) is continuous and non-decreasing in k. Optimal con-
sumption f (k)� g (k) is non-decreasing in k.

We can now prove a Benveniste-Scheinkman type of result:

Claim 3 The value function is di¤erentiable for all k > 0 with

V 0 (k) = U 0 (f (k)� g (k)) f 0 (k) :

Proof. If g (k) > 0 we have an interior optimum and we can use B-S argument.
Since g (k) is non-decreasing we can only have g (k) = 0 on some interval [0; k1].
On (0; k1) we have

V (k) = U (f (k)) + �V (0) ;

which is immediately di¤erentiable. Moreover, we can show that the right and
left derivative of V exist at k1 and are equal (on the right use B-S argument, on
the left our second argument!). So the function V is di¤erentiable for all k > 0.

But then we can rule out the possibility of g (k) = 0 for any k > 0. For this
we need one more assumption:
Assumption 4. The production function satis�es f (0) = 0 (no output with

no capital) and limk!0+ f
0 (k) > 0 (something can be produced!).

Take any k > 0. Notice that f (k0)� g (k0)! 0 as k0 = 0, using Assumption
3 there must exist some " > 0 such that

U 0 (f (k)� ") < �V 0 (") = U 0 (f (")� g (")) f 0 (") :

This condition, together with concavity of U and V implies that there is a
g (k) > " that satis�es the optimality condition

U 0 (f (k)� g (k)) = �V 0 (k0) = U 0 (f (k0)� g (k0)) f 0 (k0) :

Since the optimum is unique g (k) > 0 for all k > 0. We have proved the
following:

Claim 4 The optimal policy is positive for all k > 0.

1.2 Steady state and stability

First we look for a steady state. Then we will argue that there is a unique
steady state with positive capital. Then that it is stable.
De�nition: A steady state is a k� such that k� = g (k�).
There is always a steady state at k� = 0, since then 0 is the only feasible

continuation.
If there is a steady state with k� > 0 it must satisfy

U 0 (f (k�)� k�) = �V 0 (k�) = �U 0 (f (k�)� k�) f 0 (k�) :
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This (and U 0 > 0) implies that

�f 0 (k�) = 1: (2)

Assumption 5. The production function satis�es

lim
k!1

f 0 (k) = 0:

This implies that a solution to (2) exists.
Concavity of V implies that

V 0 (k) > V 0 (g (k))() k < g (k)

V 0 (k) < V 0 (g (k))() k > g (k)

But if k > 0

V 0 (k) = U 0 (f (k)� k) f 0 (k)
V 0 (g (k)) = U 0 (f (k)� k) =�

So we have

f 0 (k) > 1=� () V 0 (k) > V 0 (g (k))

f 0 (k) < 1=� () V 0 (k) < V 0 (g (k))

and concavity of f implies

k < k� () f 0 (k) > 1=�

k > k� () f 0 (k) < 1=�

So we conclude that if k > 0

k < k� () g (k) > k

k > k� () g (k) < k

This shows that the steady state k� is stable.
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