14.451 Lecture Notes 6

Guido Lorenzoni

Fall 2009

1 Euler equations

Consider a sequence problem with F continuous differentiable, strictly concave increasing in its first l arguments ($F_{x} \geq 0$). Suppose the state x_{t} is a nonnegative vectors $\left(X \subset R_{+}^{l}\right)$.

Then we can use the Euler equation and a transversality condition to find an optimum.

If a sequence $\left\{x_{t}^{*}\right\}$ satisfies $x_{t+1}^{*} \in \operatorname{int} \Gamma\left(x_{t}^{*}\right)$ and

$$
\begin{equation*}
F_{y}\left(x_{t}^{*}, x_{t+1}^{*}\right)+\beta F_{x}\left(x_{t+1}^{*}, x_{t+2}^{*}\right)=0 \tag{1}
\end{equation*}
$$

for all t, and the additional condition

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \beta^{t} F_{x}\left(x_{t}^{*}, x_{t+1}^{*}\right) x_{t}^{*}=0 \tag{2}
\end{equation*}
$$

then the sequence is optimal.
To prove it we first use concavity to show that for any feasible sequence $\left\{x_{t}\right\}$ we have
$F\left(x_{t}, x_{t+1}\right) \leq F\left(x_{t}^{*}, x_{t+1}^{*}\right)+F_{x}\left(x_{t}^{*}, x_{t+1}^{*}\right)\left(x_{t}-x_{t}^{*}\right)+F_{y}\left(x_{t}^{*}, x_{t+1}^{*}\right)\left(x_{t+1}-x_{t+1}^{*}\right)$
summing term by term for $t=1, \ldots, T$ (discounting each term by β^{t}) yields

$$
\begin{aligned}
\sum_{t=0}^{T} \beta^{t} F\left(x_{t}, x_{t+1}\right) & \leq \sum_{t=0}^{T} \beta^{t}\left(F\left(x_{t}^{*}, x_{t+1}^{*}\right)+F_{x}\left(x_{t}^{*}, x_{t+1}^{*}\right)\left(x_{t}-x_{t}^{*}\right)+F_{y}\left(x_{t}^{*}, x_{t+1}^{*}\right)\left(x_{t+1}-x_{t+1}^{*}\right)\right) \\
& =\sum_{t=0}^{T} \beta^{t} F\left(x_{t}^{*}, x_{t+1}^{*}\right)+\beta^{T} F_{y}\left(x_{T}^{*}, x_{T+1}^{*}\right)\left(x_{T+1}-x_{T+1}^{*}\right) \\
& =\sum_{t=0}^{T} \beta^{t} F\left(x_{t}^{*}, x_{t+1}^{*}\right)+\beta^{T+1} F_{y}\left(x_{T+1}^{*}, x_{T+2}^{*}\right)\left(x_{T+1}^{*}-x_{T+1}\right) \\
& \leq \sum_{t=0}^{T} \beta^{t} F\left(x_{t}^{*}, x_{t+1}^{*}\right)+\beta^{T+1} F_{x}\left(x_{T+1}^{*}, x_{T+2}^{*}\right) x_{T+1}^{*}
\end{aligned}
$$

The second line follows from the fact that all the terms $\beta^{t} F_{y}\left(x_{t}^{*}, x_{t+1}^{*}\right)\left(x_{t+1}-x_{t+1}^{*}\right)$ and $\beta^{t+1} F_{x}\left(x_{t+1}^{*}, x_{t+2}^{*}\right)\left(x_{t+1}-x_{t+1}^{*}\right)$ cancel each other, by (1), and that $x_{0}=$
x_{0}^{*} from feasibility. The third line follows from applying (1) one more time. The last line follows from $x_{T+1} \geq 0$ and $F_{x} \geq 0$.

Taking limits on both sides and using (2) shows that

$$
\sum_{t=0}^{\infty} \beta^{t} F\left(x_{t}, x_{t+1}\right) \leq \sum_{t=0}^{\infty} \beta^{t} F\left(x_{t}^{*}, x_{t+1}^{*}\right)
$$

2 Local stability

We are now going to use conditions (1) and (2) to characterize optimal dynamics around a steady state.

Suppose we find an x^{*} such that $x^{*} \in \operatorname{int} \Gamma\left(x^{*}\right)$ and

$$
F_{y}\left(x^{*}, x^{*}\right)+\beta F_{x}\left(x^{*}, x^{*}\right)=0
$$

then x^{*} is a steady state, i.e. $x^{*}=g\left(x^{*}\right)$ (can you prove it?)
Suppose first that the problem is quadratic: $F(x, y)$ is a quadratic, strictly concave function. So its derivatives are linear functions.

$$
\begin{gathered}
F_{y}\left(x_{t}, x_{t+1}\right)=F_{y}\left(x^{*}, x^{*}\right)+F_{y x} \cdot\left(x_{t}-x^{*}\right)+F_{y y} \cdot\left(x_{t+1}-x^{*}\right) \\
F_{x}\left(x_{t+1}, x_{t+2}\right)=\beta F_{y}\left(x^{*}, x^{*}\right)+\beta F_{x x} \cdot\left(x_{t+1}-x^{*}\right)+\beta F_{x y} \cdot\left(x_{t+2}-x^{*}\right) \\
F_{y x} z_{t}+F_{y y} z_{t+1}+\beta F_{x x} z_{t+1}+\beta F_{x y} z_{t+2}=0
\end{gathered}
$$

Assumption. The matrices $F_{x y}$ and $F_{y x}+F_{y y}+\beta F_{x x}+\beta F_{x y}$ are nonsingular.

Then we have the 2 nd order difference equation

$$
\begin{equation*}
z_{t+2}=\beta^{-1} F_{x y}^{-1}\left(F_{y y}+\beta F_{x x}\right) z_{t+1}+\beta^{-1} F_{x y}^{-1} F_{y x} z_{t} \tag{3}
\end{equation*}
$$

We want to characterize the optimal dynamics using (1) and (2) as sufficient conditions. So we ask the question: "given any $z_{0}=x_{0}-x^{*}$ can we find a $z_{1}=x_{1}-x^{*}$ such that the sequence $\left\{z_{t}\right\}$ satisfies (3) with initial conditions $\left(z_{0}, z_{1}\right)$ and $\lim _{t \rightarrow \infty} z_{t}=0$?"

If we find such a z_{1} then $x_{1}=x^{*}+z_{1}$ must be equal to the optimal policy $g\left(x_{0}\right)$ because the sequence $\left\{x^{*}+z_{t}\right\}_{t=0}^{\infty}$ satisfies the sufficient conditions for an optimum (1) and (2). Moreover, since the problem is strictly concave x_{1} must be unique.

We can restate the problem in terms of the 1st order difference equation:

$$
\left[\begin{array}{c}
z_{t+2} \\
z_{t+1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\beta^{-1} F_{x y}^{-1}\left(F_{y y}+\beta F_{x x}\right) & \beta^{-1} F_{x y}^{-1} F_{y x} \\
I & 0
\end{array}\right]}_{M}\left[\begin{array}{c}
z_{t+1} \\
z_{t}
\end{array}\right]
$$

Now we are looking for a z_{1} such that

$$
M^{j}\left[\begin{array}{l}
z_{1} \tag{4}\\
z_{0}
\end{array}\right] \rightarrow 0
$$

Can this be true for more than one z_{1} ? No otherwise we would have multiple solutions. So the options are:

- there is a unique z_{1} that satisfies (4). Then we have the policy $x_{1}=$ $g\left(x_{0}\right)=x^{*}+z_{1}$ and the optimal path from x_{0} converges to x^{*}.
- there is no z_{1} that satisfies (4). Then we don't have much information on $g\left(x_{0}\right)$ but we know that there is no optimal path starting at x_{0} that converges to x^{*}.

We will try to find conditions so that the first option applies.
We now leave aside dynamic programming for a moment and review useful material on the general properties of difference equations.

2.1 Difference equations

General problem: characterize the limiting behavior of the sequence $Z_{t}=M^{t} Z_{0}$ for some square matrix M and all possible initial conditions $Z_{0} \in R^{2 l}$.

Useful result: given a square matrix M, it can be decomposed as

$$
M=B^{-1} \Lambda B
$$

where Λ is a Jordan matrix and B is a non-singular matrix. The elements on the diagonal of Λ are the solutions to

$$
\operatorname{det}(\lambda I-M)=0
$$

(some of them may be complex numbers). This is called the characteristic equation of M and the expression on the right-hand side the characteristic polynomial.

Then we can analyze the dynamics of the sequence $W_{t}=B Z_{t}$. Since B is invertible, there is a one-to-one mapping between Z_{t} and W_{t}, so all the properties we can establish for $\left\{W_{t}\right\}$ translate into properties of $\left\{Z_{t}\right\}$. Convergence is much easier to analyze for the sequence W_{t}, because

$$
W_{t}=B Z_{t}=B M u_{t-1}=B B^{-1} \Lambda B u_{t-1}=\Lambda w_{t-1}
$$

so

$$
w_{t}=\Lambda^{t} w_{0}
$$

But the powers of a Jordan matrix Λ have nice limiting properties. The matrix is made of diagonal blocks of the form

$$
\Lambda_{j}=\left[\begin{array}{ccccc}
\lambda_{j} & 1 & 0 & \ldots & 0 \\
0 & \lambda_{j} & 1 & \ldots & 0 \\
0 & 0 & \lambda_{j} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & 1 \\
0 & 0 & 0 & 0 & \lambda_{j}
\end{array}\right]
$$

and $\Lambda_{j}^{t} \rightarrow 0$ (a matrix of zeros) if $\left|\lambda_{j}\right|<1$.
A simple example in R^{2}. The difference equation is

$$
Z_{t}=M Z_{t-1}
$$

with M a 2×2 matrix. Suppose M has a real eigenvalue λ with $|\lambda|<1$ and the associated eigenvector is \hat{Z}. Then we have (by definition of eigenvalue and eigenvector)

$$
M \hat{Z}=\lambda \hat{Z}
$$

To find \hat{Z} we need the following equation

$$
(\lambda I-M) Z=0
$$

to have a solution different from zero, but this requires $\lambda I-M$ to be nonsingular, i.e. $\operatorname{det}(\lambda I-M)=0$. This shows why we find the λ 's by solving the characteristic equation.

Once we find λ and $\hat{Z}=\left[\zeta_{1}, \zeta_{2}\right]^{\prime}$ how can we use them to solve our original problem? First remember that M has the form

$$
M=\left[\begin{array}{cc}
J & K \\
I & 0
\end{array}\right]
$$

for some numbers J and K. This means that ζ_{2} cannot be zero. Otherwise

$$
\lambda\left[\begin{array}{l}
\zeta_{1} \\
\zeta_{2}
\end{array}\right]=\left[\begin{array}{cc}
J & K \\
I & 0
\end{array}\right]\left[\begin{array}{l}
\zeta_{1} \\
\zeta_{2}
\end{array}\right]
$$

would give $\zeta_{1}=\zeta_{2} / \lambda=0$ and \hat{Z} cannot be $[0,0]^{\prime}$ (by definition of eigenvector).
Now take any initial condition z_{0} and set $z_{1}=\left(\zeta_{1} / \zeta_{2}\right) z_{0}$ so that $\left[z_{1}, z_{0}\right]^{\prime}$ is proportional to \hat{Z} :

$$
\left[\begin{array}{l}
z_{1} \\
z_{0}
\end{array}\right]=\frac{z_{0}}{\zeta_{2}}\left[\begin{array}{l}
\zeta_{1} \\
\zeta_{2}
\end{array}\right]
$$

This means that we have found a z_{1} such that $\left[z_{1}, z_{0}\right]^{\prime}$ is an eigenvector of M. Therefore

$$
\left[\begin{array}{c}
z_{t+1} \\
z_{t}
\end{array}\right]=M^{t}\left[\begin{array}{l}
z_{1} \\
z_{0}
\end{array}\right]=\lambda^{t}\left[\begin{array}{l}
z_{1} \\
z_{0}
\end{array}\right] \rightarrow 0
$$

since $|\lambda|<1$.
In the next lecture we'll see how to generalize this (using the Jordan decomposition).

MIT OpenCourseWare
http://ocw.mit.edu

14.451 Dynamic Optimization Methods with Applications

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

