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1 More on local stability

We now have the results needed to analyze local stability. From the 2nd order
di¤erence equation

zt+2 = �
�1F�1xy (Fyy + �Fxx) zt+1 + �

�1F�1xy Fyxzt:

We get the matrix

M =

�
��1F�1xy (Fyy + �Fxx) ��1F�1xy Fyx

I 0

�
= B�1�B: (1)

Suppose the eigenvalues on the diagonal of � are ordered from the smallest to
the largest (in absolute value). So, given z0, if we �nd a z1 such that

B

�
z1
z0

�
=

�
w1
0

�
for some w1 2 Rl and the �rst l eigenvalues have absolute value smaller than 1,
we have found a z1 such that

M j

�
z1
z0

�
= B�j

�
w1
0

�
! 0:

From this we construct a sequence zj =
�
1 0

�
M j

�
z1 z0

�0
that satisfy

Euler and transversality and we are done.
From �

B11 B12
B21 B22

� �
z1
z0

�
=

�
w1
0

�
;

we need to solve
B21z1 +B22z0 = 0:

To do so we show that B21 is invertible. Proceeding by contradiction, suppose
not. Then B21 is singular and there is a ~z1 6= 0 such that

B21~z1 = 0:
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But then �
B11 B12
B21 B22

� �
~z1
0

�
=

�
~w1
0

�
for some ~w1 2 Rl. This means that x1 = x�+~z1 6= x� is optimal from the initial
condition x0 = x� + 0 = x�. This contradicts the fact that x� is a steady state
and g (x�) = x� (the policy is unique by strict concavity).
We have all the crucial steps for the following theorem. But �rst let us

remember our assumptions.
Assumption 1. The payo¤ function F (x; y) is quadratic and strictly con-

cave. The feasible set is a convex set X � Rl+, the constraint correspondence
� (x) is continuous.
Assumption 2. The matrices Fxy and Fyx + Fyy + �Fxx + �Fxy are non-

singular.
Assumption 3. The steady state

x� = (Fyx + Fyy + �Fxx + �Fxy)
�1
(Fy (0; 0) + �Fx (0; 0))

is interior, x� 2 int� (x�), and satis�es Fx > 0.
Assumption 4. The matrix M de�ned in (1) has l eigenvalues smaller

than 1 in absolute value.

Theorem 1 Under assumptions 1 to 4, there is a neighborhood I of x� where
the policy is given by

g (x) = x� �B�121 B22 (x� x�) :

The optimal sequence converges to the steady state x� for any initial condition
x0 2 I.

Proof. All the steps before tell us that given any initial condition x0 2 Rl there
is a sequence fx�t g

1
t=0 that satis�es the Euler equation at each t and converges to

x�. By choosing x0 su¢ ciently close to x� we can ensure that x�t 2 int�
�
x�t�1

�
and Fx

�
x�t ; x

�
t+1

�
> 0 for all t (make sure you know how to make this step more

formal).
To complete the proof we use the argument in the last set of lecture notes

showing that the Euler equation and the transversality condition are su¢ cient
for an optimum. The Euler equation is satis�ed by construction. The transver-
sality condition holds because

lim
t!1

�tFx
�
x�t ; x

�
t+1

�
xt = lim

t!1
�tFx (x

�; x�)x� = 0:

Notice one small wrinkle: in last set of notes we assumed Fx � 0 everywhere,
but fortunately the argument goes through if we only have Fx

�
x�t ; x

�
t+1

�
� 0

along our candidate sequence fx�t g
1
t=0. (Notice that a quadratic objective rules

out Fx � 0 everywhere, so we can�t hope to use that argument). So the Euler
equation and transversality are su¢ cient to show that fx�t g

1
t=0 is optimal.
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Notice that if X = Rl and � (x) = Rl for all x, it is possible to prove
that the preceding characterization of a quadratic problem holds globally, not
only locally (proving it is a bit more involved that what it seems from reading
SLP, because the transversality condition we are using here does not work when
X = Rl).

1.1 The general nonlinear case

It was ok to restrict attention to local arguments in the quadratic case because
we want to use the quadratic case as a step towards local characterization of
steady states in the general case where the objective is possibly non-quadratic
and so the policy is possibly non-linear. We now make the following assump-
tions, that generalize our previous set of assumptions.
Assumption 1. The payo¤ function F (x; y) is twice continuously dif-

ferentiable and strictly concave. The feasible set is X � Rl+, the constraint
correspondence � (x) is continuous.
Assumption 2. There is an x� 2 X that satis�es Fx (x�; x�) > 0, x� 2

int� (x�) and
Fy (x

�; x�) + �Fy (x
�; x�) = 0:

Assumption 3. The matrices Fxy and Fyx+Fyy+�Fxx+�Fxy, evaluated
at (x�; x�), are non-singular at the steady state.
Assumption 4. The matrix M , evaluated at (x�; x�), has l eigenvalues

smaller than 1 in absolute value.

Theorem 2 Under assumptions 1 to 4, there is a neighborhood I of x� such that
the optimal sequence converges to the steady state x� for any initial condition
x0 2 I.

Proof (sketch). The idea here is to use the implicit function theorem to �nd
a function h (x; y) which solves the Euler equation

Fy (x; y) + �Fy (y; h (x; y)) = 0

for all (x; y) in a neighborhood of (x�; x�). The di¤erence equation then is�
xt+2
xt+1

�
=

�
h (xt; xt+1)
xt+1

�
and the Jacobian of the map on the right is�

h1 h2
I 0

�
=

�
��1F�1xy (Fyy + �Fxx) ��1F�1xy Fyx

I 0

�
:

Then using general local characterization of non-linear di¤erence equations
(Thm 6.6) we can �nd a neighborhood U of (x�; x�) and a continuously di¤er-
entiable function � (xt; xt+1) such that if � (x0; x1) = 0 and xt+2 = h (xt; xt+1)
for all t � 1 then limt!1 xt = x

�. With a step analogous to the linear case we
can show that for all x0 there is a x1 that satis�es � (x0; x1) = 0 and choose the
neighborhood small enough that all xt are in the interior of the constraint set
and have Fx > 0.
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