
14.451 Lecture Notes 8

Guido Lorenzoni

Fall 2009

1 Stochastic dynamic programming: an exam-
ple

We now turn to analyze problems with uncertainty, in discrete time. We begin
with an example that illustrates the power of recursive methods.
Take an unemployed worker with linear utility function. The worker is draw-

ing wage-o¤ers from a known distribution with continuous c.d.f. F (w) on [0; �w].
At any point in time, he can stop and accept the o¤er. If he accepts he gets to
work at wage w and then works forever getting utility w= (1� �).
Sequence setup: history is sequence of observed o¤ers

wt = (w0; w1; :::; wt) :

A plan is to stop or not after any possible history, i.e., choose � (wt) 2 f0; 1g.
The stopping time T is a random variable that depends on the plan � (:): T is
the �rst time where � (wt) = 1. Objective is to choose � (:) to maximize

E

"
�T

1� �wT

#
:

Recursive setup. State variable: did you stop in the past? if yes what wage
did you accept? So the state space is now X = funemployedg [R+. The value
after stopping at wage w is just V (w) = w= (1� �). So we need to characterize
V (unemployed), which we will denote V U .
Each period decision after never stopped is

max

�
w

1� � ; �V
U

�
or, equivalently,

max
�2f0;1g

�
w

1� � + (1� �)�V
U :

So optimal policy is to stop if w > ŵ, not stop if w < ŵ, and indi¤erence if
w = ŵ, where ŵ = (1� �)�V U .
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Bellman equation

V U =

Z �w

0

max

�
w

1� � ; �V
U

�
dF (w) :

We can rewrite it in terms of the cuto¤ ŵ and we have

ŵ = (1� �)�
Z �w

0

max

�
w

1� � ; �V
U

�
dF (w)

= �

Z �w

0

max fw; ŵg dF (w)

�nd �xed point, here simply �nd ŵ that solves

ŵ = T (ŵ)

where

T (v) � �
Z �w

0

max fw; vg dF (w) :

Properties of this map:

� it is continuous increasing on [0; �w];

� has derivative

T 0 (v) = �F (v)� �vf (v) + �vf (v) = �F (v) 2 [0; �]

for v 2 (0; �w) (here we use continuous distribution);

� has T (0) = E [w] and T ( �w) = �w.

Therefore, a unique �xed point ŵ exists and is in (0; �w) (you can use con-
traction mapping to prove it).

Comparative statics 1. An increase in � increases the cuto¤ ŵ.
Just look at

T (v) = �

Z �w

0

max fw; vg dF (w)

and see that it is increasing in both � and v at the �xed point ŵ.
Comparative statics 2. A �rst-order stochastic shift in the distribution

F leads to a (weak) increase in ŵ.
Comparative statics 3. A second-order stochastic shift in the distribution

F leads to a (weak) increase in ŵ.
What is �rst-order and second-order stochastic dominance? Take two dis-

tributions F and G on R.
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De�nition 1 The distribution F dominates the distribution G in the sense of
1st order stochastic dominance i¤Z

h (x) dF (x) �
Z
h (x) dG (x)

for all monotone functions h : R! R.

De�nition 2 The distribution F dominates the distribution G in the sense of
2nd order stochastic dominance i¤Z

h (x) dF (x) �
Z
h (x) dG (x)

for all convex functions h : R! R.

Sometimes you see stochastic dominance (1st and 2nd order) de�ned in terms
of comparisons of the c.d.f. of F and G and then the de�nitions above are
theorems!
Exercise: using the de�nitions above prove comparative statics 2 and 3.

Characterizing the dynamics. Let us make the problem more interesting
(and stationary) by assuming that when employed agents lose their job with
exogenous probability �. The state space is still X = funemployedg [R+.
Now the Bellman equation(s) are

V (w) = w + �
�
�V U + (1� �)V (w)

�
V U =

Z
max

�
V (w) ; �V U

	
dF (w)

From the �rst we get

V (w) =
w + ��V U

1� � (1� �)

and we have to �nd V U from

V U =

Z
max

�
w + ��V U

1� � (1� �) ; �V
U

�
dF (w)

Exercise: prove that this de�nes a contraction with modulus �.
So we still have a cuto¤ given by

ŵ = � (1� �) (1� �)V U :

Now the new thing is that the optimal policy de�nes a Markov process for
the state xt 2 X. Now let us simplify assuming the distribution of wages is a
discrete distribution with J possible realizations f!1; !2; :::; !Jg and probabili-
ties f�1; �2; :::; �Jg (the c.d.f. is now a step function). Suppose !|̂�1 < ŵ < !|̂.
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Now we have a Markov chain with transition probabilities given as follows:

Pr (xt+1 = unemployed j xt = unemployed) =

|̂�1X
j=1

�j

Pr (xt+1 = !j j xt = unemployed) = 0 for j = 1; :::; |̂� 1
Pr (xt+1 = !j j xt = unemployed) = �j for j = |̂; :::; J

Pr (xt+1 = unemployed j xt = !j) = � for all j

Pr (xt+1 = !j j xt = !j) = 1� � for all j
Pr (xt+1 = !j0 j xt = !j) = 0 for all j0 6= j and all j

We can then address questions like: suppose you have a large population
of agents (with independent wage draws and separation shocks) and you start
from some distribution on the state X, if the economy goes on for a while do
you converge to some invariant distribution on X?
This is the analogous of the deterministic dynamics, but the notion of con-

vergence is di¤erent. No steady state but invariant distribution.
Example: f!1; !2; !3g with |̂ = 2, then X = funemployed; !1; !2; !3g and

transition matrix:

M =

2664
�1 0 �2 �3
� 1� � 0 0
� 0 1� � 0
� 0 0 1� �

3775 :
Suppose you start from distribution

�
�1;0; �2;0; �3;0; �4;0

�0
. What happens to

the distribution after t periods?2664
�1;t
�2;t
�3;t
�4;t

3775 =M t

2664
�1;0
�2;0
�3;0
�4;0

3775
Does it converge?
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