1 Asset Prices: overview

- Euler equation
- C-CAPM
- equity premium puzzle and risk free rate puzzles
- Law of One Price / No Arbitrage
- Hansen-Jagannathan bounds
- resolutions of equity premium puzzle

2 Euler equation

- agent problem

$$
\begin{aligned}
\max & \sum_{j=0}^{\infty} \sum_{s^{t}} \beta^{t} u\left(c_{t}\left(s^{t}\right)\right) \operatorname{Pr}\left(s^{t}\right) \\
c_{t}\left(s^{t}\right)+q_{t}^{a}\left(s^{t}\right) \cdot a_{t+1}\left(s^{t}\right) & \leq W_{t}\left(s^{t}\right) \\
W_{t+1}\left(s^{t+1}\right) & =y_{t+1}\left(s^{t+1}\right)+\left(q_{t+1}^{a}\left(s^{t+1}\right)+d_{t+1}\left(s^{t+1}\right)\right) a_{t+1}\left(s^{t}\right)
\end{aligned}
$$

- comment: a_{t} and q_{t}^{a} are vectors of length equal to the number of assets
- Euler equation

$$
\begin{gather*}
u^{\prime}\left(c_{t}\right) q_{t}^{a i}=\beta E_{t}\left[u^{\prime}\left(c_{t+1}\right)\left(q_{t+1}^{a i}+d_{t+1}^{i}\right)\right] \tag{1}\\
u^{\prime}\left(c_{t}\right)=\beta E_{t}\left[u^{\prime}\left(c_{t+1}\right) R_{t+1}^{i}\right] \\
1=E_{t}\left[\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)} R_{t+1}^{i}\right] \tag{2}
\end{gather*}
$$

- transversality condition

$$
\lim _{j \rightarrow \infty} \beta^{j} E_{0}\left[u^{\prime}\left(c_{t+j}\right) q_{t+j}^{a} a_{t+j}\right]=0
$$

- pricing formula
repeated substitution of (1)

$$
\begin{equation*}
q_{t}^{a}=\sum_{j=1}^{\infty} \beta^{j} E_{t}\left[\frac{u^{\prime}\left(c_{t+j}\right)}{u^{\prime}\left(c_{t}\right)} d_{t+j}\right] \tag{3}
\end{equation*}
$$

- no bubbles
- transversality and $s_{t}=1$
- complete markets consistency check
review A-D price with complete markets

$$
q_{t+j}^{t}\left(s^{t}, s^{j}\right)=\beta \frac{u^{\prime}\left(c_{t+1}^{i}\left(s^{t}, s^{j}\right)\right)}{u^{\prime}\left(c_{t}^{i}\left(s^{t}\right)\right)} \operatorname{Pr}\left(s^{j} \mid s^{t}\right)
$$

3 CCAPM (Consumption Capital Asset Pricing Model)

- make (2) and (3) operational:

CCAPM \equiv use aggregate consumption in above equations

- justifications:
- equilibrium of representative agent economy (Lucas / Breeden)
- equilibrium with complete markets (Constantinides) complete markets \Longleftrightarrow Pareto Optima \Longleftrightarrow representative consumer (weighted utility)
- back to Euler equation

$$
1=E_{t}\left[\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)} R_{t+1}^{i}\right]
$$

- Absence of arbitrage implies that there exists some m_{t+1} such that

$$
1=E_{t}\left[m_{t+1} R_{t+1}^{i}\right]
$$

THE empirically testable condition (again)

- intuitive decomposition

$$
1=\beta E_{t}\left(\frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\right) E_{t}\left(R_{t+1}^{i}\right)+\beta \operatorname{cov}_{t}\left(\frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}, R_{t+1}^{i}\right)
$$

\rightarrow its the covariance that matters!

4 Equity Premium Puzzle

- Euler equations with data on $R^{\text {stock market }}$ and $R^{\text {bonds }}$
- simple log-normal calculation
- preferences and consumption

$$
\begin{gathered}
u^{\prime}(c)=c^{-\gamma} \\
\frac{c_{t+1}}{c_{t}}=\bar{c}_{\Delta} \exp \left\{\varepsilon_{c}-\frac{1}{2} \sigma_{c}^{2}\right\} \\
\varepsilon_{c} \backsim N\left(\mu_{c}, \sigma_{c}^{2}\right) \\
\Rightarrow \\
\Rightarrow E\left(\frac{c_{t+1}}{c_{t}}\right)=\mu^{c}
\end{gathered}
$$

- returns

$$
\begin{aligned}
R^{i} & =\left(1+\bar{r}^{i}\right) \exp \left\{\varepsilon_{i}-\frac{1}{2} \sigma_{i}^{2}\right\} \\
\varepsilon_{i} & \sim N\left(\mu_{c}, \sigma_{c}^{2}\right) \\
& \Rightarrow E\left(R^{i}\right)=R^{i}=1+\bar{r}^{i}
\end{aligned}
$$

- Euler

$$
\begin{aligned}
& 1=\beta E\left[R^{i}\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\right] \\
& 1=\beta\left(1+\bar{r}^{i}\right)\left(\bar{c}_{\Delta}\right)^{-\gamma} E_{t} \exp \left(\varepsilon_{i}-\frac{1}{2} \sigma_{i}^{2}-\gamma \varepsilon_{c}+\gamma \frac{1}{2} \sigma_{c}^{2}\right) \\
& 1=\beta\left(1+\bar{r}^{i}\right)\left(\bar{c}_{\Delta}\right)^{-\gamma} E_{t} \exp \left((1+\gamma) \gamma \frac{1}{2} \sigma_{c}^{2}-\gamma \sigma_{i c}\right)
\end{aligned}
$$

- taking logs...

$$
\log \left(1+\bar{r}^{i}\right)=-\log \beta+\gamma \log \bar{c}_{\Delta}-(1+\gamma) \gamma \frac{1}{2} \sigma_{c}^{2}+\gamma \sigma_{i c}
$$

- stocks and bonds:

$$
\begin{align*}
& \bar{r}^{f} \approx \log \left(1+\bar{r}^{f}\right)=-\log \beta+\gamma \log \bar{c}_{\Delta}-(1+\gamma) \gamma \frac{1}{2} \sigma_{c}^{2} \tag{4}\\
& \bar{r}^{s} \approx \log \left(1+\bar{r}^{s}\right)=-\log \beta+\gamma \log \bar{c}_{\Delta}-(1+\gamma) \gamma \frac{1}{2} \sigma_{c}^{2}+\gamma \sigma_{s c} \tag{5}
\end{align*}
$$

- premium:

$$
\begin{equation*}
\bar{r}^{s}-\bar{r}^{f} \approx \log \left(1+\bar{r}^{s}\right)-\log \left(1+\bar{r}^{f}\right)=\gamma \sigma_{s c} \tag{6}
\end{equation*}
$$

Table removed due to copyright restrictions.

Kocherlakota, Narayana R. "The Equity Premium Puzzle: It's Still a Puzzle." Journal of Economic Literature 34, no. 1 (1996): 47 (Table 1).

- US data (from Mehra and Prescott):

$$
\begin{aligned}
\bar{r}^{s} & =7 \% \\
\bar{r}^{f} & =1 \% \\
\sigma_{r c} & =.219 \%
\end{aligned}
$$

- Kocherlakota
- need $\gamma=27$ to match (6)
equity premium puzzle
- to match (4) we need γ very high or very low risk free rate puzzle

Tables removed due to copyright restrictions.

Kocherlakota, Narayana R. "The Equity Premium Puzzle: It's Still a Puzzle." Journal of Economic Literature 34, no. 1 (1996): 42-71. (Tables 2 and 3).

5 Discount Factors: LOP and NA

I follow Cochrane and Hansen (1992) closely - great paper to read

- two periods "now" and "then" (t and $t+1$ if you prefer)
- J "fundamental" assets:
$-x^{j}$ payoff "then"
- q^{j} "now" price
\rightarrow stack into x and q (column) vectors
- payoff space for "then"

$$
P \equiv\{p: p=c \cdot x \text { for some } c \in \mathbb{R}\}
$$

- pricing function $\pi(p): P \rightarrow \mathbb{R}$
then $\pi(x)=q$
- definition: Law of One Price (LOP) holds if the pricing function is linear

$$
\pi(c \cdot x)=c \cdot \pi(x)=c \cdot q
$$

$\Rightarrow c \cdot x=c^{\prime} \cdot x$ then $c \cdot q=c^{\prime} \cdot q^{1}$

- definition: discount factor $y \in P$

$$
\pi(p)=E(y p)
$$

- Riesz representation Theorem

LOP $\Leftrightarrow \exists$ (stochastic) discount factor $y \in P$

- Let \mathcal{Y} be the set of all discount factors
- note: y may be negative
- example:

$$
y^{*}=x^{\prime}\left(E x x^{\prime}\right)^{-1} q
$$

note: if $E x x^{\prime}$ is non-singular then remove assets from x until it is!
a non-singular $E x x^{\prime}$ means that (a) there is a risk-free asset (b) there are two ways of getting the same payoff

- Definition: No Arbitrage (NA) holds

$$
\begin{aligned}
& p \geq 0 \Rightarrow \pi(p) \geq 0 \\
& p>0(\text { with positive prob. }) \Rightarrow \pi(p)>0
\end{aligned}
$$

- result NA $\Leftrightarrow \exists$ strictly positive discount factor $y>0$

Let \mathcal{Y}^{++}be the set of all discount factors that are positive

- examples

$$
m=\frac{\beta^{t} u^{\prime}\left(c_{\text {then }}\right)}{u^{\prime}\left(c_{\text {now }}\right)}
$$

[^0]
6 Hansen-Jagannathan bounds

- all theories:

$$
\begin{aligned}
q & =E(m p) \\
m & =f(\text { data }, \text { parameters })
\end{aligned}
$$

(see Cochrane's book)

- note p^{i} / q^{i} is rate of return
- H-J bounds:
diagnostic tool for models of m
- special case:
data on a single excess return relative to some baseline asset

$$
r=p / q-p^{0} / q^{0}
$$

then $\pi(r)=0$ so that

$$
\begin{gathered}
0=E m r=E m E r+\operatorname{cov}(m, r) \\
=\operatorname{EmEr}+\sigma_{m} \sigma_{r} \operatorname{corr}(m, r) \\
-1 \leq \frac{E m E r}{\sigma_{m} \sigma_{r}}=\operatorname{corr}(m, r) \leq 1 \\
\left|\frac{E m E r}{\sigma_{m} \sigma_{r}}\right| \leq 1 \\
\frac{\sigma_{r}}{|E r|} \leq \frac{\sigma_{m}}{E m}
\end{gathered}
$$

intuition: need volatile σ_{m}

- note: $E m=1 / R^{f}$ if there is a risk free rate R^{f}
- lets generalize:
for any random vector x we can consider the population regression:

$$
m=a+x^{\prime} b+e
$$

which just defines e uniquely as having $\mathbb{E} e=0$ and $\operatorname{cov}(x, e)=0$

- by definition $\operatorname{cov}(e, x)=0$

$$
\Rightarrow \operatorname{var}(m) \geq \operatorname{var}\left(x^{\prime} b\right)
$$

- idea compute $x^{\prime} b$ and $\operatorname{var}\left(x^{\prime} b\right)$ to get lower bound
\rightarrow check whether theories for y pass this test

$$
\begin{aligned}
b & =[\operatorname{cov}(x, x)]^{-1} \operatorname{cov}(x, y) \\
a & =E y-E x^{\prime} b
\end{aligned}
$$

- How to compute b ?
idea: if $x=p$ then theory helps...
- assume $x=p$ note that

$$
\operatorname{cov}(x, y)=q-E(y) E(x)
$$

so:

$$
\begin{gathered}
b=[\operatorname{cov}(x, x)]^{-1}[q-E(y) E(x)] \\
\operatorname{var}\left(x^{\prime}[\operatorname{cov}(x, x)]^{-1}[q-E(y) E(x)]\right)=\operatorname{var}(x)[\operatorname{var}(x)]^{-2} E(y)^{2} E(x)^{2}
\end{gathered}
$$

- if we knew $E(y)$ we have a lower bound
otherwise \Rightarrow feasible region for pair $(E(y)$, var $(y))$
- convenient
- no need to recompute lower bound for each theory
- helps see where the theory fails
- 3 cases:
- risk-less return
$\rightarrow E(y)$ pinned down and risky return
- one excess-return $q=0$

Sharpe ratio and market price of risk (what we did before!)

- general case \rightarrow very flexible, see CH paper
- figures 2.1: excess
- 2.2, 2.3, 2.4 from CH paper

7 Resolutions (?)

7.1 Exotic Preferences

- Risk Aversion vs. IES
(Weil / Epstein-Zin)
- first-order risk aversion
(Epstein-Zin)
- habit persistence e.g. $u\left(c_{t}-\alpha c_{t-t}\right)$
(Abel / Campbell-Cochrane)
- loss-aversion

7.2 Heterogenous Agent Incomplete Markets

- uninsured idiosyncratic risk
(Mankiw / Constantinides-Duffie)
- borrowing constraints (Euler with inequality)
(Luttmer / Heaton-Lucas)
- constrained optima with limited commitment
(Alvarez-Jermann)

7.3 Knightian Uncertainty

- risk vs. uncertainty
- fear of not understanding returns / uncertainty over probability distribution / desire for robust decisions (Hansen and Sargent)

7.4 No risk premium!

- no risk premium to explain...
- historical returns on stocks were unexpected
(McGratten-Prescott)
- bonds are money \rightarrow low return
- stocks more risky than sample (low probability of a crash) (see Reitz, Cochrane, Weitzman and Barro)

8 Conclusions

Risk premium puzzle

- great example of interplay between theory and data
- no strong consensus on resolution yet
many new ideas
- new models should explore
- revisit the welfare costs of BCs
(Alvarez and Jermann)

[^0]: ${ }^{1}$ proof:

 $$
 \begin{aligned}
 \pi(c \cdot x) & =\pi\left(c^{\prime} \cdot x\right) \\
 c \pi(x) & =c^{\prime} \pi(x) \\
 c q & =c^{\prime} q
 \end{aligned}
 $$

