
1 Overview  

Income Fluctuation problem: 

• — Quadratic-CEQ


Permanent Income
→ 

—	 CARA


precuationary savings
→ 

—	 CRRA


steady state inequality
→ 

— borrowing constraints 

• General Equilibrium: 
steady state capital and interest rate 

2	 Certainty Equivalence and the Permanent 
Income Hypothesis(CEQ-PIH) 

2.1 Certainty 

assume βR = 1• 
T =∞ for simplicity 

• no uncertainty: X∞
max βt u (ct) 

t=0 

At+1 = (1 + r) (At + yt − ct) 

solution: "	 #•	 Xr	
∞

ct = At + yt + R−t yt+j
1 + r 

j=1 
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2.2 Uncertainty: Certainty Equivalence and PIH 

•	 tempting... "	 # X ¶t 
r	

∞ µ 
1 

ct = At + yt + Et	 yt+j
1 + r	 1 + r 

j=1 

•	 Permanent Income Hypothesis (PIH) 

•	 Certainty Equivalence: 
x E (x)→ 

valid iff:• 

—	 preferences: u (c) quadratic and c ∈ R 

•	main insight: 

given “permanent” income 

Xµ ¶t∞
1 

yt
p ≡ yt + Et	 yt+j

1 + r 
j=1 

ct function of yp and not independently of yt•	 t 

innovations • Xµ ¶j
r 

∞
1 

=∆ct ≡ ct − ct−1	 [Etyt+j − Et−1yt+j ]
1 + r 1 + r 

j=0 

revisions in permanent income → 

•	 implications: 

—	 random-walk: 
Et−1 [∆ct] = 0  

—	 no insurance...

...consumption smoothing minimize ∆c
→ 
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—	marginal propensity to consume from wealth: 
r 

1 + r 

—	marginal propensity to consume from innovation to current income 
depends on persistence of income process 

•	 example: {yt} is MA (2)


yt = εt + β1εt−1 = β (L) εt
X 
∆ct	 = 

r 
∞

R−j [Etyt+j − Et−1yt+j]
1 + r 

j=1 

r © ª 
= yt − Et−1yt +R−1 (Etyt+1 − Et−1yt+1)

1 + r 

= 
r

εt + 
r

R−1β1εt1 + r 1 + r 
r £ ¤

= 1 +R−1β1 εt
1 + r 

where yt = εt +β1εt−1, Et−1yt = β1εt−1 and Et−1yt+j = 0 for j ≥ 1 and 
Etyt+1 = βεt 

ARMA • 
α (L) yt = β (L) εt 

r β (R−1) 
= → ∆ct 
1 + r α (R−1) 

εt


persistence 
∂ε
∂ 
t 
ct > 

1+
r
r
• → 

•	 with  a  unit root in  yt

mg propensity to consume may be greater than 1
→ 

3	 Estimation and Tests 

3.1 CEQ-PIH 

•	 “random walk” (martingale): 

∆ct = ut 

Et−1ut = 0  
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• ut perfectly correlated with news arriving at t about the expected 
present value of future income: 

Xr 
∞

1 
∆ct = ut = 

1 +  r 
j=0 (1 + r)

[Etyt+j − Et−1yt+j ]j 

•	 Two main tests: (generally on aggregate data) 

—	 random walk unpredictability of consumption →
violations = ‘excess sensitivity’ to predictable current income 

—	 propensity to consume 
too small given income perisistence = “excess smoothness” 

both tests rely on persistence of income controversial •	 → 

•	 aggregation issues: 

—	 across goods 

—	 agents: Euler equation typically non-linear 
Attanasio and Weber leads to rejection on aggregate data → 

—	 time aggregation: 
data averaged over continuous time

introduces serial correlation
→ 

3.2 Euler Equations 

•	 Hall: revolutionary idea:


forget consumption function


find property it satisfies


Euler equation! → 

u0 (ct) =  β (1 + r) Et [u0 (ct+1)] 

Attanasio et al • 
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4 Precautionary Savings 

• idea: break CEQ 

4.1 Two Periods 

• two period savings problem: 

maxu (c0) + βEU (c̃1) 

a1 + c0 = Ra0 + y0 = x 

c̃1 = Ra1 + ỹ1 

• subsituting: 
max {u (x0 − a1) + βEU (Ra1 + ỹ1)}
a1 

f.o.c. (Euler equation) 

u0 (x0 − a1) = βR EU 0 (Ra1 + ỹ1) 

Figure 1: optimum: unique intersection k1 
∗ 
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U'[(1+r)k0+z0-k1]

β(1+r)EU'[z1+(1+r)k1]

k1k1
*

k1
*Optimum: unique intersection



• mean preserving spread: second order stochastic dominance 

1 + ε̃ with E (ε̃replace ỹ1 with ỹ01 = ỹ
 | y) = 0 


Comparative Static with u000 > 0: Mean Preserving Spread 

•	 three possibilities: 

0 ( ) linear · a
∗ 
1 constant U
—
 ⇒


) convex: RHS rises · increases 0 ∗ 
1U
 (
—
 a
⇒


) concave: RHS falls · decreases 0 ∗ 
1U
 (
—
 a
⇒


1•	 introspection: a

•	 CRRA: U 0 (c) = c−σ for σ > 0 is convex 

somewhat unavoidable: • 
U 0 (c) > 0 and c ≥ 0 

⇒ U 0 (c) strictly convex near 0 and ∞ 

4.2 Longer Horizon 

i.i.d. income shocks • 
T	=∞ 
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increases U 0 ( ) is convex U 000 > 0·∗ ⇒


U'[(1+r)k0+z0-k1]

β(1+r)EU'[z1+(1+r)k1]

β(1+r)EU'[z1+E+(1+r)k1]

k1k1
* k1

* '

Increase in uncertainty



•	 Bellman equation


V (x) = max {u (x − a0) + βEV (Ra0 + ỹ)}


FOC from Bellman • 

u0 (c) = βR EV 0 (Ra + ỹ)


again: V 0 convex precautionary savings
•	 → 

•	 but V 000 endogneous! 

•	 result: u000 > 0 then v000 > 0 (Sibley, 1975) 

4.3 CARA 

•	 CARA preferences 
u (c) = − exp (−γc) 

V (x) = max {u (x − a0) + βEV (Ra0 + ỹ)}
a 

•	 no borrowing constraints (except No-Ponzi)

no non-negativity for consumption


•	 guess and verify: 
V (x) = Au (λx)


where λ ≡ r

1+r 

note with CARA • 
u (a + b) = −u (a)u(b) 

•	 verifying


V (x) = max {u (x − a0) + βAEu (λ (Ra0 + ỹ))}
µ ¶	 ½ µ µ ¶¶ µ µ ¶ ¶¾
r	 1 1 r 

V (x) =  −u 
1 + r

x max u − a0 − 
R
x + βAEu r a0 − 

R
x + 

R
ỹ³ ´ n	 ³ ´o r	 r 

V	 (x) =  −u x max u (−α0) + βAEu rα0 + ỹ
R	 R 
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where 
r 

α0 = a0 − x/R or equivalently c = x − α0 
1 + r


confirms guess. Solving for A :
n ³ ´o r 
A = max  u (−α0) + βAEu rα0 + ỹ

R ³ ´ r 
u0 (−α0) =  rβAEu0 rα0 + ỹ

R³ ´ r 
u (−α0) =  rβAEu rα0 + ỹ

R


where we used  u0(c) = −γu(c)
 ³ ´ r 
A = u (−α0) + βAEu rα0 + ỹ

R 

= u (−α0) +  
u (−α0)

= − 
1 + r

u (−α0) 
r r 

(note A >  0)

coming back...
 ³ ´ 1 + r r 

u (−α0) =  rβ (−u (−α0))Eu rα0 + ỹ
r R³ ´ r 

u (−rα0) =  β (1 + r)Eu ỹ
R³ ³ ´´ 1 r −α0 = u−1 β (1 + r)Eu ỹ

r R ³ ´ 1 1 r 
= u−1 (β (1 + r)) + Eu ỹ

r r R 

• verifying c(x) = λx + α using Euler... 

u0 (ct) =  βR Etu0 (ct+1) 
1 =  βR Etu0 (ct+1 − ct) 

1 =  βR Etu0 (c (xt+1)− c(xt)) 

1 =  βR Etu0 (λ (xt+1 − xt)) 

since xt+1 = Rat+1 + yt+1 and at+1 = α0 + xt/R 

xt+1 − xt = R (α0 + xt/R) + yt+1 − xt = Rα0 + yt+1 
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³ ´ r 
1 = βREtu0 rα0 + yt+1

R
same as before 

• Verifying value function (again) 

note that u0(c) = − γu(c) 

u0 (ct) = βR Etu0 (ct+1) u (ct) = βREtu (ct+1)⇐⇒ 

Etu (ct+1) = (βR)−t u (ct) 
Then welfare current consumption: ⇐⇒ X X∞ ∞

1 + r 
Vt ≡ βtEtu (ct+s) =  βt (βR)−t u (ct) =  

r
u (ct) 

s=0 s=0 

Verifying 
1 + r 

ct = λxt ⇐⇒ V (x) =  
r

u (λx − α0) 

• consumption function 

1 1 log (β (1 + r)) 
c (x) =  λ 

∙ 

x + 
r
y∗
¸ 

− 
r γ 

1 
y∗ ≡ 

λ
u−1 [Eu (λy)] 

• suppose βR = 1  
no CEQ...


...but simple deviation: constant y∗


• CARA, the good: 

— tractable 

— useful benchmark helps understand other cases → 

— good for aggregation (linearity) 

• CARA, the bad: 

— negative consumption 

— unbounded inequality 

9 



5 Income Fluctuation Problem 

•	 iid income yt 

•	 ct ≥ 0 

•	 borrowing constraints 

5.1 Borrowing Constraints: Natural and Ad Hoc 

•	 natural borrowing constraint

maximize borrowing given ct ≥ 0

ct ≥ 0 + No-Ponzi 


ymin ⇒ at ≥ −  
r 

•	 ad hoc borrowing constraint: 

at ≥ −φ 

φ = min{ymin/r, b} 

Bellman • 
V (x) =  max  x − a0) + βEV (Ra0 + ỹ)}

a0≥−φ 
{u (

•	 change of variables 

ât = at + φ and ât+1 ≥ 0 
zt = Rât + yt − rφ 

zt = ât + ct 

•	 transformed problem 

v (z) = max  a
â0≥0 

{u (z − ˆ0

(droppingbnotation) 
v (z) = max  z − a0

a0≥0 
{u (
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) + βEv (Râ0 

) + βEv (Ra0 

+ ỹ − rφ)} 

+ ỹ − rφ)} 



5.2 Properties of Solution 

βR= 1 

•	 CARA: E [at+1] > at and E [ct+1] > ct 

•	Martingale Convergence Theorem:

If xt ≥ 0 and


xt ≥ E [xt+1]


then xt → ˜ x <  ∞ a.e.)
x (note: ˜

Euler • 
u0 (ct) = βRE [u0 (ct+1)] 

u0 (ct) converges ⇒
⇒ ct → c 

•	 if c <  ∞ contradiction with budget constraint equality 

• at →∞ and ct →∞ 


βR< 1


•	 Bellman equation 

v (z) = max {u (x − a0) + βEv (Ra0 + ỹ − rφ)}
a0 

•	 v is increasing, concave and differentiable 

•	 Preview of Properties 

—	monotonicity of c (z) and a0 (z) 

—	 borrowing constraint is binding iff z ≤ z∗ 

—	 if 
u00 (c)

lim = 0  
c	 0 u0 (c)→

then assets bounded 
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— if u ∈ HARA class ⇒ c (z) is concave (Carrol and Kimball) 

•	 borrowing constraints 

—	 certainty: [0, z∗] large

approached monotonically


—	 uncertainty: [0, z∗] relatively small

not approached monotonically


•	 concavity of v 

concavity of Φ (a0) = βEv (Ra0 + ỹ)⇒ 

standard consumption problem with two normal goods ⇒ 

v (z) = max {u (c) +© (a0)}
c,a0 

c + a0 ≤ x 

a0 ≥ 0 

c (z) and a0 (z) are increasing in z⇒ 
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                      Figures removed due to copyright restrictions.

           See figures Ia and Ib on p. 667 in Aiyagari, S. Rao.
       "Uninsured Idiosyncratic Risk and Aggregate Savings."
    Quarterly Journal of Economics 109, no. 3 (1994): 659-684. 

 
    
    
    



•	 FOC (Euler) 
u0 (x − a0) ≥ βREv0 (Ra0 + ỹ) 

equality if a0 > 0 

define• 
u0 (z∗) =  βR Ev0 (ỹ) 

c = zz ≤ z∗ ⇒ 

a0 = 0⇒ 

Assets bounded above 

•	 not a technicality...

...remember CARA case


•	 idea: take a →∞ 


income uncertainty unrelated to a (i.e. absolute risk)

−u00 0 income uncertainty unimportant

u0	 → ⇒
βR bites a0 < a  falls ⇒

Proof 
exist a z∗ such that z0 = (1 +  r) a0 (z) +  ymax ≤ z for z ≥ z∗ 

max 

Euler 
Eu0 (c (z0)) 

u0 (c (z)) = β (1 + r) u0 (c̄ (z)) 
u0 (c̄ (z)) 

where c̄ (z) =  c (z0 (z)) = c (a0 (z) +  ymax − rφ)max 

E [u0 (c (z0))]
IF lim	 = 1  DONE 

z→∞ u0 (c̄ (z)) 
⇒

Eu0 (c (z0)) u0 (c (z)) u0 (c̄ (z) − (c̄ (z) − c (z)))
1 ≥ 

u0 (c̄ (z)) 
≥

u0 (c̄ (z)) 
≥ 

u0 (c̄ (z)) 

since a0 is increasing 

c̄ (z) − c (z) =  c (Ra0 (z) +  ymax − rφ) − c (Ra0 (z) +  ymin − rφ) < ymax − ymin 

13




Eu0 (c (z0)) u0 (c̄ (z) − (ymax − ymin))
1 ≥ 

u0 (c̄ (z)) 
≥ 

u0 (c̄ (z)) 

Since z → ∞ ⇒ a0 (z) , c  (z) → ∞ then c̄ (z) =  c (a0 (z) +  ymax − rφ) → 
. Apply Lemma below. ¥∞
Lemma. for A >  0 

u0 (c −A) 
1 

u0 (c) 
→


Proof. 1 ≤


u0 (c −A) 
Z A u00 (c − s)

= 1 + 	 ds 
u0 (c) 0 u0 (c)Z A 

= 1  − 
0 

u0 

u

(c 
0 (

−
c) 
s) −

u

u
0

00 

(c 
(c 
−
−
s) 
s)
ds Z A 

= 1  − 
0 

u0 

u

(c 
0 (

−
c) 
s)
γ (c − s) ds Z A 

≤ 1 − γ (c − s) ds 
0 

since u
0(c−s) > 1 for all t >  0 
u0(c) Z	 A 

0	
γ (c − s) ds → 0 

so u
0(c−A) 1. ¥ 
u0(c) →

6 Lessons from Simulations 

From Deaton’s “Saving and Liquidity Constraints” (1991) paper: 

•	 important

borrowing constraint may bind infrequently


(wealth endogenous)


•	marginal propensity to consume


higher than in PIH
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                          Figure removed due to copyright restrictions.
 
 
See Figure 1 on p. 1228 in Deaton, Angus. “Saving and Liquidity Constraints.” 
                      Econometrica 59, no. 5 (1991): 1221-1248.
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                            Figure removed due to copyright restrictions.
 
 
                             See Figure 2 on p. 1230 in Deaton, Angus.
 “Saving and Liquidity Constraints.” Econometrica 59, no. 5 (1991): 1221-1248.
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                         Figure removed due to copyright restrictions.
 
                          See Figure 4 on p. 1234 in Deaton, Angus. 
“Saving and Liquidity Constraints.” Econometrica 59, no. 5 (1991): 1221-1248.



•	 consumption 

—	 smoother temporary shocks 

—	 harder with permanent shocks 

7 Invariant Distributions 

•	 initial distribution F0 (z0) 

laws of motion • 
z0 = Ra0 (z) +  y0 

generate 

F0 (z0) F1 (z1)→ 

F1 (z1) F2 (z2)→ 
. . . 

•	 steady state: invariant distribution 

F (z) F (z)→

result: • 

1. exists 

2.	 unique 

3. stable 

•	 key: bound on assets and monotonicity 

•	 A (r) ≡ E (a0 (z)) 

—	 continuous 

—	 not necessarily monotonically increasing in r 
income vs. substitution; and w(r) effect 
typically: monotonically increasing 

—	 A (r) →∞ as R → β−1 
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8 General Equilibrium 

•	GE effects of precuationary savings?


more k, lower r
→

how much? • 

8.1 Huggett: Endowment 

•	 endowment economy 

•	 no government 

•	 zero net supply of assets 

•	 idea: any precuationary saving translates to lower equilibrium interest 
rate 

•	 computational GE exercise: 

—	 CRRA preferences 

—	 borrowing constraints 

8.2 Aiygari 

•	 adds capital 

•	 yt = wlt and lt is random; w is economy-wide wage P 
• N	 is given by N = lipi 

•	 define steady state equilibrium:


3 equations  / 3 unknowns:  (K, r,w)
Z 
A (z, r, w) dF (z; r, w) − φ = K 

r = Fk (K,N) − δ 

w = FN (K,N) 
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• solve w (r) and substitute: Z 
AGE (r) =  a (z, r, w (r)) dμ (z; r, w (r)) = K 

intersect with 
r = Fk (K,N) − δ 

•	 AGE (r) 

—	 continuous 

—	 not necessarily monotonically increasing in r 

(a) income vs. substitution; (b) w(r) effect 
typically: monotonically increasing 

—	 β−1A (r) →∞ as R →

•	 comparative statics 

∂—	
∂b A (0, b) > 0 

typically: ∂ A (r, b) > 0
∂b 
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           Figures removed due to copyright restrictions.
 
    See Figures IIa and IIb on p. 668 in Aiyagari, S. Rao.
   "Uninsured Idiosyncratic Risk and Aggregate Savings." 
 Quarterly Journal of Economics 109, no. 3 (1994): 659-684.



— σ2 A↑ y ⇒ ↑

wealth distribution: not as skewed • 

transition? monotonic? • 

9 Inequality  

•	 CEQ-PIH and CARA


inequality increases linearly


unbound inequality


CRRA• 
inequality increases initially 

bounded inequality 
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        Table removed due to copyright restrictions.
 
 
         See Table II on p. 678 in Aiyagari, S. Rao.
"Uninsured Idiosyncratic Risk and Aggregate Savings."
         Quarterly Journal of Economics 109, no. 3 (1994): 659-684.
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                  Figure removed due to copyright restrictions.
 
 
      See Figure 2 on p. 444 in Deaton, Angus, and Christina Paxson.
 "Intertemporal Choice and Inequality." Journal of Political Economy 102, 

no. 3 (1994): 437-467. 
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              Figure removed due to copyright restrictions.
 
 
See Figure 4 on p. 445 in Deaton, Angus, and Christina Paxson.
               "Intertemporal Choice and Inequality." 
     Journal of Political Economy 102, no. 3 (1994): 437-467.
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              Figure removed due to copyright restrictions.
 
 
See Figure 6 on p. 450 in Deaton, Angus, and Christina Paxson.
                  "Intertemporal Choice and Inequality."
     Journal of Political Economy 102, no. 3 (1994): 437-467.



Deaton and Paxson 

Revisionisist (Heathcoate, Storesletten, Violante)

Guvenen

Storesletten, Telmer and Yaron:


10 Life Cycle: Consumption tracks Income 

Carroll and Summers: 

11 Other Features and Extensions 

• Social Security: 
Hubbard-Skinnner-Zeldes (1995): “Precautionary Savings and Social 
Security” 

Scholz, Seshadri, and Khitatrakun (2006): “Are Americans Saving 
"Optimally" for Retirement?” 

• Medical Shocks: Palumbo (1999) 
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                    Figure removed due to copyright restrictions.
 
 
See Figure 1d) on p. 769 in Heathcote, Jonathan, Kjetil Storesletten, and
Giovanni L. Violante. "Two Views of Inequality Over the Life-Cycle." 
Journal of the European Economic Association 3, nos. 2-3 (2005): 765-775.
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                      Figure removed due to copyright restrictions.
 
 
                              See Figure 1 in Guvenen, Fatih. 
"Learning Your Earning: Are Labor Income Shocks Really Very Persistent?"
                    American Economic Review. (Forthcoming)
      http://www.econ.umn.edu/~econdept/learning_your_earning.pdf


Figure 9

                        Figure removed due to copyright restrictions.
 
 
See Figure 1 on p. 613 in Storesletten, Kjetil, Chris Telmer, and Amir Yaron.
                  "Consumption and Risk Sharing over the Life Cycle." 
              Journal of Monetary Economics 51, no. 3 (2004): 609-663.

Figure 10
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                    Figure removed due to copyright restrictions.
 
 
See Figure 5 on p. 624 in Storesletten, Kjetil, Chris Telmer, and Amir Yaron.
               "Consumption and Risk Sharing over the Life Cycle." 
           Journal of Monetary Economics 51, no. 3 (2004): 609-663.

Figure 11

Figure removed due to copyright restrictions.

Figure 12
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Figure 13

Figure removed due to copyright restrictions.

Figure 14



•	 Learning Income Growth: Guvenen (2006) 

•	 Hyperbolic preferences: Harris-Laibson 

•	 Leisure Complementarity 
Aguiar-Hurst (2006): “Consumption vs. Expenditure” 

•	 Attanasio-Weber: Demographics and Taste Shocks 
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