Collateral and Amplification

Macroeconomics IV

Ricardo J. Caballero
MIT

Spring 2011

References

- Bernanke B. and M.Gertler, "Agency Costs, Net Worth, and Business Fluctuations," American Economic Review, 79(1), 14-31, March 1989.
- Kiyotaki, N. and J.Moore, "Credit Cycles," Journal of Political Economy, 105(2), 211-248, April 1997.

Basic Idea

- Most models of financial constraints have an equation of the kind:

$$
f^{\prime}(K)=r+\lambda ; \quad \lambda>0,
$$

where λ results from some financial friction.

- New investment: underinvestment
- Saving existing K: inefficient destruction.

Basic Idea

- Micro: λ could take the form of credit rationing or high lending rate.
- Adverse selection: Rise in r^{L} means bad selection, thus keep r^{L} low.
- Moral hazard: if too leveraged, wrong incentives
- Macro: micro-solutions such as collateral, self-financing, create problems during recessions
- Amplification (rise in λ)
- Persistence (constrained operation limits earnings, etc.)

Bernanke-Gertler

- OLG (simpler) with $t: 1, \ldots, \infty$
- η : fraction of population that have access to investment technology (entrepreneurs). The rest are lenders.
- Entrepreneurs are heterogenous: building a project takes $x(\omega)$ units of output with $\omega \sim U[0,1]$ and $x^{\prime}(\omega)>0$.
- Project (indivisible): yields k_{i} units of capital at $t+1$ (it depreciates after that): $\mathrm{E}\left[k_{i}\right]=k$ independent of ω
- Output (note: $L=1$): $y_{t}=\tilde{\theta}_{t} f\left(k_{t}\right)$
- Storage technology (alternative for savings): $r \geq 1$. Linear preferences:

$$
(*) \quad s_{t}^{e}=w_{t} \quad s_{t}=w_{t}-z_{t}
$$

Equilibrium with Perfect Information

- Let q be the price of capital, $\hat{q}_{t+1}=\mathrm{E}\left[q_{t+1}\right]$ and $k=\mathrm{E}\left[k_{i}\right]$. Free entry implies that there is a critical $\bar{\omega}$ such that

$$
\hat{q}_{t+1} k=r x\left(\bar{w}_{t}\right)
$$

- Since $\omega \sim U[0,1]$, the number of projects i (investment) and the stock of capital (no aggregate risk) are:

$$
i_{t}=\eta \bar{\omega}_{t} ; \quad k_{t+1}=k i_{t}
$$

- Combining these results, the capital supply curve is:

$$
\hat{q}_{t+1}=\frac{r}{k} \times\left(\bar{\omega}_{t}\right)=\frac{r}{k} \times\left(\frac{i_{t}}{\eta}\right)=\frac{r}{k} \times\left(\frac{k_{t+1}}{k \eta}\right)
$$

- And since shocks θ_{t+1} are i.i.d. expected demand is

$$
\hat{q}_{t+1}=\widehat{\theta} f^{\prime}\left(k_{t+1}\right)
$$

- Shocks θ_{t+1} are i.i.d, so they affect y_{t+1} and consumption but not investment. Hence, q_{t+1} fully absorbs the shocks and k_{t+2} and y_{t+2} are unaffected.

Equilibrium with Perfect Information

As of t

Equilibrium with Perfect Information

As of $t+1$

Equilibrium with Asymmetric Information

- Purpose: To build a model where θ affects investment and next period's output (persistence).
- Townsend's costly state verification: k_{i} is costlessly observed by entrepreneurs only. Others can learn by auditing: costs $\gamma \mathrm{k}$-goods. If h_{t} projects are audited

$$
k_{t+1}=\left(k-h_{t} \gamma\right) i_{t}
$$

- Benefit of under-reporting: More consumption. Two states: $(1,2), k_{1}$ is bad; k_{2} is good.
- Basic features of contract: No auditing in good state. Auditing with probability p in bad state.

Equilibrium with Asymmetric Information

- $p=0$ if

$$
\hat{q} k_{1} \geq r\left(x(\omega)-s^{e}\right)
$$

i. e. if the expected value of the low output $\hat{q} k_{1}$ is larger than the repayment $r\left(x(\omega)-s^{e}\right)$, where $x(\omega)-s^{e}$ is the size of the loan (cost of project entrepreneur's wealth)

- If not, $0<p<1 . p$ is chosen such that the entrepreneur reports honestly when the good state occurs.
- Characterization:
- Good project even if $p=1$ (i. e. if $\omega \leq \underline{\omega}, \omega$ is so low that the project is built even if $p=1$.)

$$
\hat{q} k-r x(\underline{\omega})-\hat{q} \pi_{1} \gamma=0
$$

- Positive return only if $p=0$ (i. e. if $\omega=\bar{\omega}$, the project is built only if $p=0$):

$$
\hat{q} k-r x(\bar{\omega})=0
$$

- The intermediate case $\omega \in[\underline{\omega}, \bar{\omega}]$ is illustrated in the following figure.

Equilibrium with Asymmetric Information

w_lbar < w < w_ubar

Equilibrium with Asymmetric Information

Equilibrium with Asymmetric Information

- An increase in θ_{t} increases s_{t}^{e}, so that more entrepreneurs can invest and the s^{g}-curve shifts down.
- Hence, we get more investment and k_{t+1} increases (even though θ_{t} is i.i.d.).
- Any wealth shock has real consequences beyond consumption (balance sheet shock).
- We have both amplification and persistence
- However, the multiplier is "limited" (price movement dampens the effect).... next model...

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Kiyotaki-Moore

- One group can't borrow as much as it wants. If it did, it would behave opportunistically
- Land: factor of production and collateral (substitutes for commitment)

Kiyotaki-Moore

- $t=0,1,2, \ldots$.
- Two goods: A non-durable commodity (fruit), and land, with total supply \bar{K}.
- Two types of agents (both produce and consume fruit): farmers (mass of one) and gatherers (mass of m)
- $\beta^{F}<\beta^{G}$ (linear preferences) plus other assumptions to rule out corners. Since farmers are more impatient, they are borrowers in equilibrium.
- One period credit market: $R=1 / \beta^{G}$.

Farmers

- CRS technology: out of k_{t} units of land, farmers produce $a k_{t}$ units of tradeable fruit and $c k_{t}$ units of nontradeable fruit

$$
y_{t}=(a+c) k_{t} ; \quad \frac{a}{a+c}<\beta^{F}
$$

- (Important) Assumption: After production starts, only specific farmer can complete it. Inalienability of human capital (farmer can withdraw effort). Moreover, farmers can get the entire surplus, hence specificity/appropriability imply reluctance to lend. Collateral is needed for lending:

$$
\begin{equation*}
R b_{t} \leq q_{t+1} k_{t} \tag{1}
\end{equation*}
$$

where b_{t} is the farmer's debt at t and q_{t+1} the price of land at $t+1$.

- The flow of funds constraint is

$$
\begin{equation*}
q_{t}\left(k_{t}-k_{t-1}\right)+R b_{t-1}+\left(x_{t}-c k_{t-1}\right)=a k_{t-1}+b_{t} \tag{2}
\end{equation*}
$$

where x_{t} is consumption. Investment in land and consumption must be financed by output and net borrowing.

Gatherers

- DRS technology: \tilde{k}_{t} units of time t land produce $G\left(\tilde{k}_{t}\right)$ units of time $t+1$ fruit

$$
\tilde{y}_{t+1}=G\left(\tilde{k}_{t}\right) \quad G^{\prime}>0, G^{\prime \prime}<0
$$

- No specificity / no credit constraint. The gatherers' flow of funds constraint is

$$
\begin{equation*}
q_{t}\left(\tilde{k}_{t}-\tilde{k}_{t-1}\right)+R \tilde{b}_{t-1}+\tilde{x}_{t}=G\left(\tilde{k}_{t-1}\right)+\tilde{b}_{t} \tag{3}
\end{equation*}
$$

Characterization of Equilibrium

- Farmers: Only consume nontradeable fruit and invest as much as they can:

$$
x_{t}=c k_{t-1} \quad R b_{t}=q_{t+1} k_{t}
$$

- Substituting this in (2) yields:

$$
\begin{equation*}
k_{t}=\frac{1}{q_{t}-q_{t+1} / R}\left[\left(a+q_{t}\right) k_{t-1}-R b_{t-1}\right] \tag{4}
\end{equation*}
$$

where $1 /\left(q_{t}-q_{t+1} / R\right)$ is the multiplier and $\left[\left(a+q_{t}\right) k_{t-1}-R b_{t-1}\right]$ is the farmers' net worth. Since everything is linear, we can aggregate (4)

$$
\begin{equation*}
K_{t}=\frac{1}{u_{t}}\left[\left(a+q_{t}\right) K_{t-1}-R B_{t-1}\right] \tag{5}
\end{equation*}
$$

with $u_{t} \equiv q_{t}-q_{t+1} / R$ and (1) becomes

$$
\begin{equation*}
B_{t}=\frac{1}{R} q_{t+1} K_{t} \tag{6}
\end{equation*}
$$

- An increase in $q_{t}=q_{t+1}$ raises K_{t} (when collateral effect dominates).

Market Clearing

- The gatherers solve

$$
\max _{\tilde{k}_{t}} \frac{1}{R} G\left(\tilde{k_{t}}\right)+\frac{1}{R} q_{t+1} \tilde{k}_{t}-q_{t} \tilde{k}_{t}
$$

with FOC

$$
\frac{1}{R} G^{\prime}\left(\tilde{k}_{t}\right)=\frac{1}{R}\left[(R-1) q_{t}-\left(q_{t+1}-q_{t}\right)\right]=u_{t}
$$

- Market clearing implies $\tilde{K}_{t}=\left(\bar{K}-K_{t}\right) / m$ and hence

$$
\begin{equation*}
u\left(K_{t}\right)=\frac{1}{R} G^{\prime}\left(\frac{1}{m}\left(\bar{K}-K_{t}\right)\right) . \tag{7}
\end{equation*}
$$

- With perfect foresight / no bubbles, we can use the definition of user cost

$$
u\left(K_{t}\right)=q_{t}-\frac{1}{R} q_{t+1}
$$

and solve forward

$$
\begin{equation*}
q_{t}=\sum_{s=0}^{\infty} R^{-s} u\left(K_{t+s}\right) \tag{8}
\end{equation*}
$$

Steady State

- In steady state, (6) implies $q K=R B$. Substituting in (5) yields

$$
\begin{equation*}
\frac{R-1}{R} q^{*}=u^{*}=a<a+c . \tag{9}
\end{equation*}
$$

(7) becomes

$$
\begin{equation*}
\frac{1}{R} G^{\prime}\left(\frac{1}{m}\left(\bar{K}-K^{*}\right)\right)=u^{*} \tag{10}
\end{equation*}
$$

Combining (6) with (9) yields

$$
\begin{equation*}
B^{*}=\frac{a}{R-1} K^{*} . \tag{11}
\end{equation*}
$$

Steady State

Dynamics

- Start from $\left(K^{*}, B^{*}, q^{*}\right)$. Temporary increase in farmers' productivity a by Δ (surprise, followed by perfect foresight)
- First best: $\Delta Y_{t}=\Delta$; no further action.
- Kiyotaki-Moore economy: By (5),

$$
\begin{gathered}
u\left(K_{t}\right) K_{t}=\left[a(1+\Delta)+q_{t}-q^{*}\right] K^{*}, \\
u\left(K_{t+s}\right) K_{t+s}=a K_{t+s-1}+0 .
\end{gathered}
$$

By (8) we clearly identify a positive feedback since:

$$
q_{t}=\sum_{s=0}^{\infty} R^{-s} u\left(K_{t+s}\right) .
$$

Final Remarks

- Collateral damage implies wasted opportunities.
- The feedback between asset prices and optimal investment/allocation is pervasive, especially during severe crises
- Fire sales

MIT OpenCourseWare
http://ocw.mit.edu

14.454 Economic Crises

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

