Notes on Tax Implementation

Iván Werning

1 Certainty

- utility

$$
U(x, \theta)
$$

where $x \in X$ is a vector and $\theta \in \Theta$ is worker types

- Example 1: Mirrlees (1971) has $x=(c,-y)$ where c is consumption y is effective labor; in this case we want to know study the non-linear income tax schedule.
- Example 2: Two-period model with labor in the first period and consumption in both periods: $U\left(c_{0}, c_{1}, y_{0}\right)$; in this example we'd like to study the nonlinear taxation of income and the taxation of savings [Atkinson-Stiglitz applies if U is separable]
- at this stage: no assumption on preferences (conavity, dimentionality of Θ, single crossing, etc.) needed
- define MRS

$$
M R S_{i j}(x, \theta)=\frac{U_{i}(x, \theta)}{U_{j}(x, \theta)}
$$

- when $\hat{x}(\theta)$ is an optimal allocation, it to look at the "wedges" or "implicit marginal taxes" defined by either

$$
M R S_{i j}(\hat{x}(\theta), \theta)-\frac{p_{j}}{p_{i}} \quad \text { or } \quad \frac{M R S_{i j}(\hat{x}(\theta), \theta)}{p_{j} / p_{i}}
$$

we want to understand to what extent these measures are related to explicit taxes

1.1 The Problem of Implementation...

- incentive compatible allocation is a function $\hat{x}: \Theta \rightarrow X$ such that

$$
\begin{equation*}
U(\hat{x}(\theta), \theta) \geq U\left(\hat{x}\left(\theta^{\prime}\right), \theta\right) \quad \forall \theta, \theta^{\prime} \in \Theta^{2} \tag{1}
\end{equation*}
$$

- implementability question: what budget sets B can we confront agent with and get \hat{x} allocation?

$$
\begin{equation*}
\hat{x}(\theta) \in \arg \max _{x \in B} U(x, \theta) \tag{2}
\end{equation*}
$$

- Note: B is independent of θ
...captures anonymous taxation

1.2 ...Its Solution...

- smallest set that works...

$$
\underline{B} \equiv\{x \mid \exists \theta \in \Theta \quad \text { s.t. } \quad x=\hat{x}(\theta)\}
$$

note that: incentive compatibility (1) implies (2) with \underline{B}

- this gives as much choice as the direct mechanism!...
... not a lot of choice if X has high dimension and Θ is low dimension
- largest set?

$$
\bar{B} \equiv\{x \mid U(x, \theta) \leq U(\hat{x}(\theta), \theta) \forall \theta \in \Theta\}
$$

equivalently

$$
\bar{B} \equiv\{x \mid U(x, \theta) \leq \hat{v}(\theta) \forall \theta \in \Theta\}
$$

where $\hat{v}(\theta) \equiv U(\hat{x}(\theta), \theta)$

- full characterization: any set B such that

$$
\underline{B} \subseteq B \subseteq \bar{B}
$$

also implements \hat{x}

1.3 ...In Terms of Taxes

- to think of taxation...
- benchmark budget without tax:

$$
p \cdot x \leq 0
$$

- $T(x)$ function such that

$$
p \cdot x+T(x) \leq 0
$$

is equivalent to $x \in B$ where B implements \hat{x}

- for lowest possible taxes use $B=\bar{B}$
- numeraire good: $x=\left(x_{1}, x_{-1}\right)$ with $p_{1}=1$ then

$$
x_{1}+T\left(x_{-1}\right)+p_{-1} \cdot x_{-1} \leq 0
$$

- retention function...

$$
x_{1} \leq R\left(x_{-1}\right)=-\left(T\left(x_{-1}\right)+p_{-1} \cdot x_{-1}\right)
$$

- to implement we need

$$
\hat{x}_{1}(\theta)=R\left(\hat{x}_{-1}(\theta)\right) \quad \theta \in \Theta
$$

and

$$
R\left(x_{-1}\right) \leq \hat{R}\left(x_{-1}\right) \equiv \max _{x_{1}} x_{1} \quad \text { s.t. } \quad U\left(x_{1}, x_{-1}, \theta\right) \leq \hat{v}(\theta) \quad \forall \theta \in \Theta
$$

- equivalently: need $R\left(x_{-1}\right) \leq \hat{R}\left(x_{-1}\right)$ for all $x \in X$ and $R\left(x_{-1}\right)=\hat{R}\left(x_{-1}\right)$ for $x \in \underline{B}$.
- invert...

$$
U\left(x_{1}, x_{-1}, \theta\right) \leq \hat{v}(\theta)
$$

to write...

$$
x_{1} \leq U^{-1}\left(\hat{v}(\theta), x_{-1}, \theta\right)
$$

- then

$$
\hat{R}\left(x_{-1}\right) \equiv \min _{\theta \in \Theta} U^{-1}\left(\hat{v}(\theta), x_{-1}, \theta\right)
$$

1.4 Some Properties of the Solution

- idea: since \hat{R} defined as optimization, we can apply Maximum and Envelope Theorems
- economic questions...
- how much more choice?
- marginal taxes exist?
- do they equal wedges?
- Maximum Theorem: Assume $U: X \times \Theta \rightarrow \mathbb{R}$ is continuous, then $\hat{v}(\theta)$ and $\hat{R}\left(x_{-1}\right)$ are continuous functions; the set

$$
M\left(x_{-1}\right) \equiv \arg \min _{\theta \in \Theta} U^{-1}\left(\hat{v}(\theta), x_{-1}, \theta\right)
$$

is upper hemi continuous correspondence (note that $\theta \in M\left(\hat{x}_{-1}(\theta)\right)$)

- this means we never impose sharp penalties in the sense of discontinuous taxes;
- In contrast, the direct mechanism implicitly imposes infinite taxes for any allocation outside \underline{B} ! In this sense, Taxes are very discontinous.
- Envelope Theorem: Suppose U is differentiable w.r.t. x and $M\left(x_{-1}\right)$ is single valued, then

$$
\frac{\partial}{\partial x_{-1}} \hat{R}\left(x_{-1}\right) \equiv \frac{\partial}{\partial x_{-1}} U^{-1}\left(\hat{v}\left(M\left(x_{-1}\right)\right), x_{-1}, M\left(x_{-1}\right)\right)=-\frac{\frac{\partial}{\partial x_{-1}} U\left(\hat{R}\left(x_{-1}\right), x_{-1}, M\left(x_{-1}\right)\right)}{\frac{\partial}{\partial x_{1}} U\left(\hat{R}\left(x_{-1}\right), x_{-1}, M\left(x_{-1}\right)\right)}
$$

That is,

$$
\frac{\partial}{\partial x_{-1}} \hat{R}\left(x_{-1}\right)=M R S_{x_{1}, x_{-1}}\left(\hat{R}\left(x_{-1}\right), x_{-1}, M\left(x_{-1}\right)\right)
$$

- $M\left(x_{-1}\right)$ is single valued means that only one type θ is indifferent to $\left(\hat{R}\left(x_{-1}\right), x_{-1}\right)$.
- This provides a condition for the marginal tax to exist and equal the tax wedge along the equilibrium set \underline{B}.
- If $M\left(x_{-1}\right)$ is not single valued then we candidate $M R S$ s...
...this actually implies kinks in \hat{R}
...We can still compute left and right derivatives
- for example: static Mirrlees (1971) when bunching occurs we get a convex kink in income tax schedule

1.5 Linear Taxes?

- can we choose a subset of goods to be taxed linearly? (not taxed is particular case, e.g. Atkinson-Stiglitz)
- suppose we can divide goods $x=\left(x^{a}, x^{b}\right)$ so that

$$
\hat{x}^{b}(\theta)=\hat{x}^{b}\left(\theta^{\prime}\right) \Longrightarrow \hat{x}^{a}(\theta)=\hat{x}^{a}\left(\theta^{\prime}\right) \quad \forall \theta, \theta^{\prime} \in \Theta^{2}
$$

i.e. x^{b} identifies x^{a}, write

$$
x^{a}=\hat{\alpha}\left(x^{b}\right)
$$

- typically

$$
\operatorname{dim} \Theta=\operatorname{dim} X^{b} \leq \operatorname{dim} X
$$

so this can be done

- define support of x^{b}

$$
B^{b} \equiv\left\{x^{b} \mid \exists \theta \in \Theta \quad x^{b}=\hat{x}^{b}(\theta)\right\}
$$

- now, for given x^{b} consider the set

$$
B\left(x^{b}\right) \equiv\left\{x^{a} \mid U\left(x^{a}, x^{b}, \theta\right) \leq \hat{v}(\theta) \quad \forall \theta \in \Theta\right\}=\left\{x^{a} \mid\left(x^{a}, x^{b}\right) \in \bar{B}\right\}
$$

- given $x^{b} \in \bar{B}^{b}$ define a linear set

$$
B^{L}\left(x^{b}\right)=\left\{x^{b} \mid q\left(x^{b}\right) \cdot\left(x^{a}-\hat{\alpha}\left(x^{b}\right)\right) \leq 0\right\}
$$

for some consumer prices q which may depend on x^{b}

- note: $\hat{\alpha}\left(x^{b}\right) \in B^{L}\left(x^{b}\right)$
- "mixed taxation"...

$$
B=\left\{x \mid x^{a} \in B^{L}\left(x^{b}\right) \quad \text { and } \quad x^{b} \in B^{b}\right\}
$$

- Question: can this implement \hat{x} ?
- Yes, if and only if

$$
B^{L}\left(x^{b}\right) \subseteq B\left(x^{b}\right)
$$

- sufficient condition: holds if $\left[B\left(x^{b}\right)\right]^{c}$ is convex
- in terms of taxes:

$$
p \cdot x+T\left(x^{a}, x^{b}\right) \leq 0
$$

given x^{b} can we make $T\left(\cdot, x^{b}\right)$ linear? i.e.

$$
T\left(x^{a}, x^{b}\right)=t\left(x^{b}\right)+\tau\left(x^{b}\right) \cdot x^{a}
$$

- sufficient condition: if $\bar{T}\left(\cdot, x^{b}\right)$ is convex then we use linear tangent
- Example: two-period consumption, linear tax on savings that depends on income
- with finite types and binding IC constraints:

1. kinks! linear tax not possible
2. but as types are closer: kinks get smaller
3. near optimal allocation do not require kinks: linear tax possible

- with continuum of types: possible

1.6 Interdependence of Taxation

- note the tradeoff: linear tax but dependent on x^{b}
- sometimes possible to separate taxes...

$$
T\left(x^{a}, x^{b}\right)=t^{b}\left(x^{b}\right)+t^{a}\left(x^{a}\right)
$$

- Example: consumption two periods, nonlinear tax on income and savings (Estate Taxation paper Farhi-Werning)

2 Uncertainty

- opens many possibilities...
general implementation: a dynamic choice problem
- Today: less general
- only uncertainty is θ_{1} at $t=1$
- pre-committed goods z (scalar; to simplify)
- ex-post goods $x(\theta)$ (vector)
- Resource constraint:

$$
z+\frac{1}{R} p_{x} \cdot \int x(\theta) d F(\theta) \leq e
$$

with first element being numeraire: $p_{x, 1}=1$

- Utility

$$
\mathbb{E}[U(z, x, \theta)]=\int U(z, x(\theta), \theta) d F(\theta)
$$

- Example: two period Inverse euler example $z=c_{0}$ and $x=\left(c_{1}, y_{1}\right)$

$$
U\left(c_{0},\left(c_{1}, y_{1}\right), \theta\right)=u\left(c_{0}\right)+\beta u\left(c_{1}\right)-h\left(y_{1} ; \theta\right)
$$

- we take as given allocation \hat{z} and $\hat{x}(\theta)$ and try to implement it
- intertemporal wedge

$$
(1+\tau) \mathbb{E}\left[U_{z}(\hat{z}, \hat{x}(\theta), \theta)\right]=R \mathbb{E}\left[U_{x_{1}}(\hat{z}, \hat{x}(\theta), \theta)\right]
$$

- Incentive compatibility...

$$
U(\hat{z}, \hat{x}(\theta), \theta) \geq U\left(\hat{z}, \hat{x}\left(\theta^{\prime}\right), \theta\right) \quad \theta^{\prime}, \theta \in \Theta^{2}
$$

- Budget constraint

$$
\begin{gathered}
z+s+T^{s}(s) \leq \hat{z} \\
p_{x} \cdot x+T^{x}\left(x_{-1}\right) \leq R s
\end{gathered}
$$

- note that T^{s} does not depend on θ
- we want to implement $s=0$ (by "Ricardian equivalence" we could also do things with for any $s \neq 0$)
- Define $T^{x}\left(x_{-1}\right) \equiv-R_{1}^{x}\left(x_{-1}\right)-p_{-1} \cdot x_{-1}$

$$
R^{x}\left(x_{-1}\right) \equiv \min _{\theta} U^{-1}\left(x_{-1}, \hat{z}, \theta\right)
$$

- utility given this is...

$$
\begin{array}{ll}
\quad v(z, s, \theta) \equiv \max _{x} U(z, x, \theta) \\
\text { s.t. } \quad p_{x} \cdot x+T^{x}\left(x_{-1}\right) \leq R s
\end{array}
$$

- This function $v(z, s, \theta)$ is continuos and differentiable in regions where the maximum is unique
- the Envelope condition at the proposed solution...

$$
\begin{aligned}
& v_{z}(\hat{z}, 0, \theta)=U_{z}(\hat{z}, \hat{x}(\theta), \theta) \\
& v_{s}(z, 0, \theta)=U_{x_{1}}(\hat{z}, \hat{x}(\theta), \theta)
\end{aligned}
$$

- expected utility is

$$
V(z, s) \equiv \int v(z, x, \theta) d F(\theta)
$$

- this function shares properties with v; it may be smoother even due to the averaging across θ...
- ...if θ is continouosly distributed, $\frac{\partial}{\partial s} V(z, s)$ and $\frac{\partial}{\partial z} V(z, s)$ exist and

$$
\begin{aligned}
& \frac{\partial}{\partial s} V(z, s)=\int v_{s}(z, s, \theta) d F(\theta) \\
& \frac{\partial}{\partial z} V(z, s)=\int v_{z}(z, s, \theta) d F(\theta)
\end{aligned}
$$

since the countable kinks in v do not matter when we average

- Now at $t=0$ we want $(z, s)=(\hat{z}, 0)$ so that

$$
\bar{B}^{z}(z, s)=\{(z, s) \mid V(z, s) \leq V(\hat{z}, 0)\}
$$

defines the largest set of pairs (z, s) that can be offered. Then

$$
V(z, s)=V(\hat{z}, 0)
$$

defines the frontier of this set. In terms of taxes

$$
V\left(\hat{z}-s-T^{s}(s), s\right)=V(\hat{z}, 0)
$$

- Differentiating the definition of T at equilibrium then gives

$$
\left(1+\frac{\partial}{\partial s} T^{s}(s)\right) \mathbb{E}\left[U_{z_{1}}(\hat{z}, \hat{x}(\theta), \theta)\right]=\mathbb{E}\left[U_{x_{1}}(\hat{z}, \hat{x}(\theta), \theta)\right]
$$

- if $F(\theta)$ is not continuos then we may have kinks in T^{s}

2.1 Alternative: State Contingent Linear Taxes

- separable utility case
- Kocherlakota proposes state dependent taxes
- define state dependent wedges:

$$
U_{z_{1}}\left(\hat{z}, \hat{x}\left(\theta^{\prime}\right), \theta\right)=\left(1-\tau\left(\theta^{\prime}\right)\right) R U_{x_{1}}\left(\hat{z}, \hat{x}\left(\theta^{\prime}\right), \theta\right)
$$

with separability only depends on θ^{\prime}

- Budget constraint then

$$
\begin{gathered}
z+s \leq \hat{z} \\
x_{1}\left(\theta^{\prime}\right)=\left(1-\tau\left(\theta^{\prime}\right)\right) R s+\hat{x}_{1}\left(\theta^{\prime}\right) \\
x_{-1}\left(\theta^{\prime}\right)=\hat{x}_{-1}\left(\theta^{\prime}\right)
\end{gathered}
$$

- note: we can turn this into

$$
\begin{gathered}
z+s \leq \hat{z} \\
x_{1}+p \cdot x_{-1}+T\left(x_{-1}\right)=\left(1-\tau\left(x_{-1}\right)\right) R s
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

14.471 Public Economics I

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

