14.471 Notes on Linear Taxation

Iván Werning

1 Overview

- Two models
- single agent (Ramsey), no lump sum tax
- agent heterogeneity and lump sum tax
- Two approaches
- primal
- dual
- Mixed Taxation

2 Single Agent Ramsey

- consumers:

$$
\max _{x} u(x) \quad \sum_{i} q_{i} x_{i} \leq 0
$$

e.g $u\left(c_{1}, c_{2}, \ldots, c_{n}, l\right)$ and $\sum p_{i}\left(1+\tau_{i}\right) c_{i}=\left(1-\tau^{l}\right) w l$

- CRS technology (inputs are supressed)

$$
F(y) \leq 0
$$

e.g. $\sum \bar{p}_{i} y_{i}-l \leq 0$

- Remark: Production efficiency holds so that $F(y)=0$ at optimum (implies intermediate inputs go untaxed) without CRS this result requires profit taxes (see Diamond-Mirrlees)
- First Best
$-\mathrm{MRS}_{i j}^{h}=\mathrm{MRS}_{i j}^{h^{\prime}}$
$-\mathrm{MRS}_{i j}^{h}=\mathrm{MRT}_{i j}$
$-F=0$ (efficient production; with inputs this requires a marginal condition equating the relative marginal products across goods)
- Firms

$$
\max _{y} p y \quad F(y) \leq 0
$$

- government

$$
\sum p_{i} g_{i} \leq \sum t_{i} x_{i}
$$

- market clearing:

$$
x_{i}+g_{i}=y_{i} \quad \forall i
$$

- note: we could have $u(c, g)$, but in what follows g is fixed, so we supress the dependence.
- Definition: A Competitive Equilibrium (CE) with taxes is p, q, c

1. x solves the consumer's maximization

$$
\max _{x} u(x) \quad \sum_{i} q_{i} x_{i} \leq 0
$$

2. y solves the profit maximization

$$
\max _{y} p y \quad F(y) \leq 0
$$

3. x, g, t, p satisfy the government budget constraint

$$
\sum p_{i} g_{i} \leq \sum t_{i} x_{i}
$$

4. markets clear

$$
x_{i}+g_{i}=y_{i} \quad \forall i
$$

- Result: $\mathrm{CE} \Longleftrightarrow F(x+g)=0$ and agent optimization (1)
- note: second condition involves x and q only
- First Best

$$
\begin{gathered}
\max _{x, q} u(x) \\
F(x+g)=0
\end{gathered}
$$

- Second Best

$$
\begin{gathered}
\max _{x, q} u(x) \\
F(x+g)=0 \\
x \in \arg \max _{x} u(x) \quad q \cdot x \leq 0
\end{gathered}
$$

- we have two variables x, q but they are related through the last condition
- At this point, from consumer maximization we can approach things from...
- primal: solve q as a function of x
- dual: solve x as a function of q
- both approaches are useful

2.1 Dual

- define

$$
V(q, I)=\max _{x} u(x) \quad q \cdot x \leq I
$$

and let $x_{i}(q, I)$ denote the solution (Marshallian/uncompensated demand)

$$
e(q, v) \equiv \min _{x} q \cdot x \quad u(x)=v
$$

and let $x_{i}^{c}(q, v)=e_{q_{i}}(q, v)$ denote the solution (Hicks/compensated demand)

- we abuse notation: $V(q)=V(q, 0)$
- Second Best:

$$
\max _{q} V(q) \quad \text { s.t. } \quad F(x(q, 0)+g)=0
$$

- property:

$$
x^{c}(q, V(q))=x(q, 0)
$$

- equivalently

$$
\max _{q} V(q) \quad \text { s.t. } \quad F\left(x^{c}(q, V(q)+g)=0\right.
$$

2.2 Optimality condition

- We have the first order condition

$$
\frac{\partial V}{\partial q_{j}}(q, 0)-\kappa \sum_{i} \frac{\partial F}{\partial y_{i}}\left(\frac{\partial x_{i}^{c}}{\partial q_{j}}+\frac{\partial x_{i}^{c}}{\partial v} \frac{\partial V}{\partial q_{j}}\right)=0
$$

- By Roy's identity $\frac{\partial V}{\partial q_{j}}=-x_{j} \frac{\partial V}{\partial I}$:

$$
-\frac{1}{\kappa} x_{j} \frac{\partial V}{\partial I}-\sum_{i} \frac{\partial F}{\partial y_{i}}\left(\frac{\partial x_{i}^{c}}{\partial q_{j}}-x_{j} \frac{\partial x_{i}^{c}}{\partial v} \frac{\partial V}{\partial I}\right)=0
$$

- Now use that $\frac{\partial x_{i}^{c}}{\partial v} \frac{\partial V}{\partial q_{j}}=\frac{\partial x_{i}}{\partial I}$ and $p_{i}=\frac{\partial F}{\partial y_{i}}$ to get

$$
-\frac{1}{\kappa} x_{j} \frac{\partial V}{\partial I}-\sum_{i} p_{i} \frac{\partial x_{i}^{c}}{\partial q_{j}}+x_{j} \sum_{i} p_{i} \frac{\partial x_{i}}{\partial I}=0
$$

- Now we know that $\sum_{i} q_{i} \frac{\partial x_{j}^{c}}{\partial q_{i}}=0$ and that $\frac{\partial x_{j}^{c}}{\partial q_{i}}=\frac{\partial x_{i}^{c}}{\partial q_{j}}$ by symmetry so that

$$
-\sum_{i} p_{i} \frac{\partial x_{i}^{c}}{\partial q_{j}}=\sum_{i} t_{i} \frac{\partial x_{i}^{c}}{\partial q_{j}}
$$

- Also, we know that $\sum_{i} q_{i} \frac{\partial x_{i}}{\partial I}=1$ so that

$$
\sum_{i} p_{i} \frac{\partial x_{i}}{\partial I}=1-\sum_{i} t_{i} \frac{\partial x_{i}}{\partial I}
$$

- Thus, we obtain

$$
\sum_{i} t_{i} \frac{\partial x_{i}^{c}}{\partial q_{j}}=-x_{j} \theta
$$

where

$$
\theta \equiv-\frac{1}{\kappa} \frac{\partial V}{\partial I}+1-\sum_{i} t_{i} \frac{\partial x_{i}}{\partial I}
$$

- or equivalently (using symmetry)

$$
\sum_{i} t_{i} \frac{\partial x_{j}^{c}}{\partial q_{i}}=-x_{j} \theta .
$$

- interpretation:
- each good is "discouraged" by a common percentage θ, i.e. interpret (falsely) as an estimate of how much good x_{j} fell due to taxation.
$-\mathrm{DWL}=e(q, V(q))-\sum t_{i} x_{i}^{c}(p, V(q))$

$$
\frac{1}{x_{i} p_{i}} \frac{\partial \mathrm{DWL}}{\partial \tau_{i}}=\mathrm{constant}
$$

intuitive: marginal DWL is proportional to revenue base (mg cost $=\mathrm{mg}$ benefit)

2.3 Primal

- Primal solves q from x
- consumer optimization

$$
x \in \arg \max _{x} u(x) \quad q \cdot x \leq 0
$$

- necessary and sufficient conditions: $\exists \lambda>0$ s.t. (assuming local non-satiation)

$$
\begin{gathered}
q_{i}=\lambda u_{i}(x) \\
q \cdot x=0
\end{gathered}
$$

thus (imlementability condition)

$$
\sum u_{i}(x) x=0
$$

- Result: reverse is also true: if $\sum u_{i}(x) x=0$ then $\exists q$ such that $x \in \arg \max _{x} u(x)$ s.t. $q \cdot x \leq 0$.
- Second best

$$
\begin{gathered}
\max u(x) \\
F(x+g)=0 \\
\sum u_{i}(x) x=0
\end{gathered}
$$

- Lagrangian:

$$
L=u(x)+\mu \sum u_{i}(x) x_{i}-\gamma F(x+g)
$$

- FOC

$$
(1+\mu) u_{i}(x)+\mu \sum_{j} u_{i j}(x) x_{j}=\gamma F_{i}(x+g)
$$

- implication

$$
\frac{F_{i}(x+g)}{F_{k}(x+g)}=\frac{u_{i}(x)}{u_{k}(x)} \frac{1+\mu+\mu \sum_{j} \frac{u_{i j}(x)}{u_{i}(x)} x_{j}}{1+\mu+\mu \sum_{j} \frac{u_{k j}(x)}{u_{k}(x)} x_{j}}
$$

- since

$$
\frac{F_{i}(x+g)}{F_{k}(x+g)}=\frac{p_{i}}{p_{k}} \quad \frac{u_{i}(x)}{u_{k}(x)}=\frac{q_{i}}{q_{k}}
$$

- tax rate (where $\left.q_{i}=\tau_{i} p_{i}\right)$

$$
\frac{\tau_{i}}{\tau_{k}}=\frac{1+\mu+\mu \sum_{j} \frac{u_{i j}(x)}{u_{i}(x)} x_{j}}{1+\mu+\mu \sum_{j} \frac{u_{k j}(x)}{u_{k}(x)} x_{j}}
$$

- exercise: show that if $U\left(G\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{0}\right)$ and G is homogeneous of degree 1 then $\tau_{1}=\tau_{2}=\cdots=\tau_{n}$.

2.4 Many Agents Dual

- Second Best (dual)

$$
\max _{q, I} \sum \lambda^{h} V^{h}(q, I) \pi^{h} \quad \text { s.t. } \quad F\left(\sum_{h} x^{c, h}\left(q, V^{h}(q, I)\right) \pi^{h}+g\right)=0
$$

- note about I :
- we can impose $I=0$;
- typically we do not want to: captures a lump sum transfer/tax
- if we allow I free then productive efficiency is obvious
- more generally
- Pareto problem not convex
- cannot maximize weighted utility
- but pareto weights for local optimality condition
- Define Lagrangian

$$
L=\sum_{h} \lambda^{h} V^{h}(q, I) \pi^{h}-\gamma F\left(\sum_{h} x^{c, h}\left(q, V^{h}(q, I)\right) \pi^{h}+g\right)
$$

- FOCs: (using same identities as before)

$$
\begin{gathered}
-\sum_{h} \lambda^{h} x_{j}^{h} \frac{\partial V^{h}}{\partial I} \pi^{h}-\gamma \sum_{h, i} F_{i}\left[\frac{\partial x_{i}^{c, h}}{\partial q_{j}}-\frac{\partial x_{i}^{c, h}}{\partial I} x_{i}^{h}\right] \pi^{h}=0 \\
\sum_{h} \lambda^{h} \frac{\partial V^{h}}{\partial I} \pi^{h}-\gamma \sum_{h, i} F_{i} \frac{\partial x_{i}^{h}}{\partial I} \pi^{h}=0
\end{gathered}
$$

- notation:
- population average: $\mathbb{E}_{h}[\cdot]=\sum_{h}[\cdot] \pi^{h}$
- adjusted pareto weight: $\beta^{h} \equiv \frac{\lambda^{h}}{\gamma} \frac{\partial V^{h}}{\partial I}$
- we arrive at the condition

$$
\mathbb{E}_{h}\left[\sum_{l} t_{l} \frac{\partial x_{j}^{c, h}}{\partial q_{l}}\right]=X_{j} \mathbb{E}_{h}\left[\frac{x_{j}^{h}}{X_{j}}\left(-1+\beta^{h}+\sum_{l} t_{l} \frac{\partial x_{l}^{h}}{\partial I}\right)\right]
$$

- Note that if we have homothetic and separable preferences then

$$
\frac{x_{j}^{h}}{X_{j}}
$$

is independent of j. So from here we can see a uniform tax result.

- if we have a lump sum then:

$$
\mathbb{E}_{h}\left[-1+\beta^{h}+\sum_{l} t_{l} \frac{\partial x_{l}^{h}}{\partial I}\right]=0
$$

so we can write

$$
\mathbb{E}_{h}\left[\sum_{l} t_{l} \frac{\partial x_{j}^{c, h}}{\partial q_{l}}\right]=X_{j} \operatorname{Cov}_{h}\left[\frac{x_{j}^{h}}{X_{j}^{,}}, \hat{\beta}^{h}\right]
$$

where $\hat{\beta}^{h}=\beta^{h}+\sum_{l} t_{l} \frac{\partial x_{l}^{h}}{\partial I}$.

- We get two intuitive cases:
- $\hat{\beta}^{h}$ is constant;
$-\frac{x_{j}^{h}}{X_{j}}$ is independent of j. Then back to regular case.
- Q: Pareto inefficiency?
- A: If \#agents $<\#$ goods maybe cannot find β^{h} that solve these equations
- Suppose utility is

$$
U^{i}\left(G\left(x_{1}, \ldots, x_{N_{1}}\right), H\left(x_{N_{1}+1}, \ldots, x_{N}\right)\right)
$$

and G, H are h.o.d. 1

- Result: tax uniformly within each group.
- Proof: treat goods $\left(x_{1}, x_{2}, \ldots, x_{N_{1}}\right)$ and $\left(x_{N_{1}}, x_{2}, \ldots, x_{N}\right)$ as inputs into production of G and H.

3 Mixed Taxation: Atkinson-Stiglitz

- Notation:
$x \in R^{m} \quad$ consumption goods
$Y \in \mathbb{R} \quad$ labor (in efficiency units)
B budget set
- Given B consumers solve:

$$
\left(x^{i}, Y^{i}\right) \in \arg \max _{(x, Y) \in B} U^{i}(x, Y)
$$

- Technology (linear)

$$
\sum_{i, j} p_{j} x_{j}^{i} \pi^{i} \leq \sum_{i} Y^{i}
$$

- Feasibility. previous 2 conditions hold.
- if B^{i} allowed to be dependent on i then we can get the first best (Welfare theorem)
- ...but here B is independent of i so we are in the second best
- Assume:

$$
u^{i}(x, Y)=U^{i}(G(x), Y)
$$

- Result: uniform taxation is efficient (Atkinson-Stiglitz).

$$
B_{A S} \equiv\{(x, Y) \mid p \cdot x \leq Y-T(Y)\}
$$

Indeed, anything else is Pareto inefficient!

- Exercise to get to result...

1. start from B_{0} that uses commodity taxes
2. create new B that is "better"

Here "better": save resources and same utility. (Why better?)

- really can start from any arbitrary B_{0}
- Note: "two stage" budgeting (given any B)...

Define:

$$
b=\{(g, Y) \mid \exists x \text { s.t. } g=G(x) \text { and }(x, Y) \in B\}
$$

then agents solve (outer stage):

$$
\arg \max _{g, Y \in b} U^{i}(g, Y)
$$

- Idea: given B_{0} we have some b_{0}. We change B_{1} but keep implied $b_{1}=b_{0}$. Then we get the same choices of Y^{i} and the same utility for each agent. Good choice:

$$
B_{1}=B_{A S} \equiv\left\{(x, Y) \mid \exists g \text { s.t. } p \cdot x \leq e^{G}(g, p) \text { and }(g, Y) \in b_{0}\right\}
$$

where $e^{G}(g, p) \equiv \min _{x} p \cdot x$ s.t. $g=G(x)$, is the expenditure function for G.

- Equivalently if we define

$$
\hat{b} \equiv\left\{(y, Y) \mid \exists g \text { s.t. } y=e^{G}(g, p) \text { and }(g, Y) \in b\right\}
$$

then

$$
B_{A S} \equiv\{(x, Y) \mid p \cdot x \leq y \text { and }(y, Y) \in \hat{b}\}
$$

which has an obvious income tax interpretation.

- This will save resources as long as x choices change. Why?

4 Pigouvian Taxation

- now assume
- single agent
- lump sum taxation
- but externalities
- utility

$$
u(x, \bar{x})
$$

concave in both x and \bar{x}

- technology

$$
F(x+g)=0
$$

- in equilibrium

$$
\bar{x}=x
$$

- agent solves (takes \bar{x} as given)

$$
\begin{gathered}
\max _{x} u(x, \bar{x}) \quad q \cdot x=I \\
\Rightarrow u_{x}\left(x^{e}, x^{e}\right)=\lambda q \\
\Rightarrow \frac{q_{i}}{q_{j}}=\frac{u_{x_{i}}\left(x^{e}, x^{e}\right)}{u_{x_{j}}\left(x^{e}, x^{e}\right)}
\end{gathered}
$$

- Social optimum

$$
\begin{gathered}
\max _{x} u(x, x) \quad F(x+g)=0 \\
\Rightarrow u_{x}\left(x^{*}, x^{*}\right)+u_{\bar{x}}\left(x^{*}, x^{*}\right)=\gamma F_{x}\left(x^{*}+g\right) \\
\Rightarrow \frac{p_{i}}{p_{j}}=\frac{F_{x_{i}}}{F_{x_{j}}}=\frac{u_{x_{i}}\left(x^{*}, x^{*}\right)+u_{\bar{x}_{i}}\left(x^{*}, x^{*}\right)}{u_{x_{j}}\left(x^{*}, x^{*}\right)+u_{\bar{x}_{j}}\left(x^{*}, x^{*}\right)}
\end{gathered}
$$

- To make

$$
x^{e}=x^{*}
$$

a necessary condition is that both conditions hold, implying

$$
\frac{p_{i} / q_{i}}{p_{j} / q_{j}}=\frac{1+\frac{u_{\bar{x}_{i}}\left(x^{*}, x^{*}\right)}{u_{x_{i}}\left(x^{*}, x^{*}\right)}}{1+\frac{u_{\bar{x}_{j}}\left(x^{*}, x^{*}\right)}{u_{x_{j}}\left(x^{*}, x^{*}\right)}}
$$

- Theorem: if p and q to satisfy this equation, then there exists an income I (i.e. lump sum tax/transfer) so that the agent chooses $x=x^{*}$.
Proof: (sketch) Use Lagrangian sufficiency theorem.

5 Application to Intertemporal Taxation

- neoclassical growth model
- simplifying assumptions
- single agent first
- no uncertainty
- technology

$$
c_{t}+g_{t}+k_{t+1} \leq F\left(k_{t}, L_{t}\right)+(1-\delta) k_{t}
$$

where F is CRS

- preferences

$$
\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, L_{t}\right)
$$

- budget constraints
- agents

$$
c_{t}+k_{t+1}+q_{t, t+1} B_{t+1} \leq\left(1-\tau_{t}\right) w_{t} L_{t}+R_{t} k_{t}+\left(1-\kappa_{t}^{B}\right) B_{t}
$$

where

$$
R_{t}=1+\kappa_{t}\left(r_{t}-\delta\right)
$$

we also need some no-ponzi conditions

$$
\begin{gathered}
q_{0, t}=q_{0,1} q_{1,2} \cdots q_{t-1, t} \\
\lim _{T \rightarrow \infty} q_{0, T} B_{T} \geq 0
\end{gathered}
$$

- government:

$$
g_{t}+B_{t} \leq \tau_{t} w_{t} L_{t}+\kappa_{t} r_{t} k_{t}+q_{t, t+1} B_{t+1}
$$

- without loss of generality:

$$
\kappa_{t}^{B}=0 \quad t=1,2, \ldots
$$

- Firms:

$$
\max _{K_{t}, L_{t}}\left\{F\left(K_{t}, L_{t}\right)-w_{t} L_{t}-r_{t} K_{t}\right\}
$$

necessary and sufficient conditions

$$
\begin{aligned}
F_{L}\left(K_{t}, L_{t}\right) & =w_{t} \\
F_{K}\left(K_{t}, L_{t}\right) & =r_{t}
\end{aligned}
$$

- Definition of an equilibrium:
- agents maximize given prices and taxes
- firms maximize
- government budget constraint satisfied
- market clears: goods, capital and bonds
- adding up both budget constraints gives

$$
g_{t}+c_{t}+k_{t+1} \leq w_{t} L_{t}+\left(1+r_{t}-\delta\right) k_{t}=F\left(k_{t}, L_{t}\right)+(1-\delta) k_{t}
$$

which is just the resource constraint

- solving B_{t} forward

$$
\sum_{t=0}^{\infty} q_{0, t}\left(c_{t}-\left(1-\tau_{t}\right) w_{t} L_{t}-R_{t} k_{t}+k_{t+1}\right) \leq\left(1-\kappa_{0}^{B}\right) B_{0}
$$

unless

$$
q_{t+1} R_{t+1}=\frac{q_{0, t+1}}{q_{0, t}} R_{t+1}=1 \quad t=0,1, \ldots
$$

there is an arbitrage

- cancelling:

$$
\sum_{t=0}^{\infty} q_{0, t}\left(c_{t}-\left(1-\tau_{t}\right) w_{t} L_{t}\right) \leq R_{0} k_{0}+\left(1-\kappa_{0}^{B}\right) B_{0}
$$

- now we can just apply the primal approach
- implementability condition:

$$
\sum_{t=0}^{\infty} \beta^{t}\left(u_{c, t} C_{t}+u_{L, t} L_{t}\right)=u_{c, 0}\left(R_{0} k_{0}+\left(1-\kappa_{0}^{B}\right) B_{0}\right)
$$

- Lagrangian

$$
L \equiv \sum_{t=0}^{\infty} \beta^{t} W\left(c_{t}, L_{t} ; \mu\right)-\mu u_{c, 0}\left(R_{0} k_{0}+\left(1-\kappa_{0}^{B}\right) B_{0}\right)
$$

where

$$
W(c, L ; \mu) \equiv u(c, L)+\mu\left(u_{c}(c, L) c+u_{L}(c, L) L\right)
$$

- optimality conditions obtained from

$$
\max L \quad \text { s.t. resource constraint }
$$

- first order conditions:

$$
\begin{gathered}
-\frac{W_{L}\left(c_{t}, L_{t} ; \mu\right)}{W_{c}\left(c_{t}, L_{t} ; \mu\right)}=F_{L}\left(K_{t}, L_{t}\right) \\
W_{c}\left(c_{t}, L_{t} ; \mu\right)=\beta R_{t+1}^{*} W_{c}\left(c_{t+1}, L_{t+1} ; \mu\right)
\end{gathered}
$$

where $R_{t+1}^{*} \equiv F_{k}\left(k_{t+1}, L_{t+1}\right)+1-\delta$ is the social rate of return

- for agent

$$
\begin{gathered}
w_{t}\left(1-\tau_{t}\right)=-\frac{u_{L}\left(c_{t}, L_{t}\right)}{u_{c}\left(c_{t}, L_{t}\right)} \\
u_{c}\left(c_{t}, L_{t}\right)=\beta R_{t} u_{c}\left(c_{t+1}, L_{t+1}\right)
\end{gathered}
$$

- implications

$$
\begin{gathered}
1-\tau_{t}=\frac{u_{L}\left(c_{t}, L_{t}\right)}{u_{c}\left(c_{t}, L_{t}\right)} \frac{W_{c}\left(c_{t}, L_{t} ; \mu\right)}{W_{L}\left(c_{t}, L_{t} ; \mu\right)} \\
\frac{R_{t+1}}{R_{t+1}^{*}}=\frac{u_{c}\left(c_{t}, L_{t}\right)}{u_{c}\left(c_{t+1}, L_{t+1}\right)} \frac{W_{c}\left(c_{t+1}, L_{t+1} ; \mu\right)}{W_{c}\left(c_{t}, L_{t} ; \mu\right)}
\end{gathered}
$$

- results:
- a form of labor tax smoothing:
* the entire sequence of g_{t} has an impact on the tax through μ
* no special role for current g_{t}, conditional on current allocation
* clearer in special cases: if

$$
u(c, L)=\frac{c^{1-\sigma}}{1-\sigma}-\alpha \frac{L^{\gamma}}{\gamma}
$$

with $\sigma>0$ and $\gamma>1$ then

$$
\tau_{t}=\bar{\tau}
$$

- at a steady state the tax on capital is zero (Chamley-Judd):

$$
\begin{aligned}
c_{t} & \rightarrow \bar{c} \quad L_{t} \rightarrow \bar{L} \\
& \Rightarrow \frac{R_{t+1}}{R_{t+1}^{*}} \rightarrow 1
\end{aligned}
$$

- initial tax on capital and bonds:
* equivalent to a lump sum tax
* optimal to expropriate
* if upper bound on tax rates, then they will binding
- last result leads to time inconsistency:
- plan to...
* tax initial capital highly
* tax future capital at zero
- will plan be carried out? can we commit to it?
* if not, and reoptimize once and for all then raise capital again
* if reoptimize all the time (discretion): expect high taxes, which lowers welfare
- with heterogeneous agents
- allow a lump sum (poll) tax
- first two results hold: tax smoothing and Chamley-Judd
- the last conclusion less clear:
* Pareto analysis
* depends on distribution of assets and redistributive intent
- even if capital levy is optimal, it may be bounded, and correct intuition is not based on a lump sum tax
- time inconsistency also more subtle: in general not time consistent, but depends on evolution of wealth

MIT OpenCourseWare
http://ocw.mit.edu

14.471 Public Economics I

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

