Notes on Non-linear Taxation

Iván Werning

1 Income Taxation

1.1 Setup

- two goods
(alternatively, other goods untaxed, perhaps because of Atkinson-Stiglitz case)
- Preference

$$
U^{i}(c, Y)=U\left(c, Y, \theta^{i}\right)
$$

- Technology

$$
G+\int(c(\theta)-Y(\theta)) d F(\theta) \leq e
$$

- F can be continuous or not (e.g. with finite types $\left.G+\sum_{i}\left(c\left(\theta^{i}\right)-Y(\theta)\right) \pi^{i} \leq e\right)$
- Income taxation: budget constraint is

$$
B=\{(c, Y) \mid c \leq Y-T(Y)\}
$$

for some $T(Y)$.

- call $R(Y) \equiv Y-T(Y)$ the retention function
- Normative Criterion?

1. Welfare function (Mirrlees, 1971)
2. Pareto efficiency

1.2 Feasibility and Incentive compatibility

- agent behavior

$$
\max _{c, Y} U^{i}(c, Y) \quad \text { s.t.c } \leq Y-T(Y)=R(Y)
$$

- Definition. An allocation and a tax function c, Y, T is feasible if: (i) RC holds; (ii) agents maximize $\{c(\theta), y(\theta)\}$ given $T(Y)$ [given $R(Y)$]
- An allocation $c(\theta), Y(\theta)$ is feasible if there exists a tax function that makes c, Y, T feasible.
- Note that resource constraint is the same as...

$$
G-e \leq \int T(Y(\theta)) d F(\theta)
$$

government budget constraint.

- Observation: if c, Y is feasible then

$$
u(c(\theta), Y(\theta), \theta) \geq u\left(c\left(\theta^{\prime}\right), Y\left(\theta^{\prime}\right), \theta\right) \quad \text { for all } \theta, \theta \in \Theta
$$

Incentive Compatibility Constraints (IC)

- Converse also true:

$$
R(\tilde{Y}) \equiv \sup \{\tilde{c} \mid u(c(\theta), Y(\theta), \theta) \geq u(\tilde{c}, \tilde{Y}, \theta) \text { for all } \theta\}
$$

IC holds \Longrightarrow if agents faced with R then optimum is attainable (optimal by definition of R)

- note: $R(Y)$ continuous by theorem of the max.
- Taxation principle and revelation principle
- Marginal taxes: if $T^{\prime}(\tilde{Y})$ exists and $\tilde{Y}=Y(\theta)$ for some θ then

$$
T^{\prime}(\tilde{Y})=T^{\prime}(Y(\theta))=1-M R S(c(\theta), Y(\theta), \theta)
$$

where

$$
M R S(c, Y, \theta) \equiv-\frac{U_{Y}(c, Y, \theta)}{U_{c}(c, Y, \theta)}
$$

- Single crossing

$$
\operatorname{MRS}(c, Y, \theta) \quad \text { is decreasing in } \theta
$$

- Single crossing $\Longrightarrow c(\theta)$ and $y(\theta)$ non-decreasing
- Finite types: Single crossing \Longrightarrow local IC are sufficient

$$
\begin{aligned}
u\left(c\left(\theta^{i}\right), y\left(\theta^{i}\right), \theta^{i}\right) & \geq u\left(c\left(\theta^{i-1}\right), y\left(\theta^{i-1}\right), \theta^{i}\right) \\
u\left(c\left(\theta^{i-1}\right), y\left(\theta^{i-1}\right), \theta^{i-1}\right) & \geq u\left(c\left(\theta^{i}\right), y\left(\theta^{i}\right), \theta^{i-1}\right)
\end{aligned}
$$

[homework: show others are implied]

- note: local IC's imply monotonicity

1.3 Two types case

- Assume $\Theta=\left\{\theta_{L}, \theta_{H}\right\}$ with $\theta_{L}<\theta_{H}$
- result 1: pooling is inefficient
...only one IC binds
- result 2: for binding agent we have $M R S=1$
... no taxation at the top.
- result 3: Pareto frontier has 3 regions

1. First best
2. IC for H binds
3. IC for L binds
and frontier bends backwards

- Program $\left(\bar{u}_{H}\right.$ is parameter here)

$$
\max u^{L}\left(c_{L}, y_{L}\right)
$$

subject to

$$
u^{H}\left(c_{H}, y_{H}\right) \geq \bar{u}_{H}
$$

$\mathrm{ICh}, \mathrm{ICl}$ and RC .

- First order conditions: derive same results

1.4 Laffer curve

- back to general case
- When is there a pareto improvement?
- Equivalently: when can we lower taxes and increase tax revenue?
- Given $T_{0}(Y)$ we get $Y_{0}(\theta)$ and we have

$$
G-e \leq \int T_{0}\left(Y_{0}(\theta)\right) d F(\theta)
$$

- Is this Pareto efficient?
- suppose budget holds with equality.
- take T_{1} prefered to T_{0}
- for feasibility we must have

$$
G-e=\int T_{0}\left(Y_{0}(\theta)\right) d F(\theta) \leq \int T_{1}\left(Y_{1}(\theta)\right) d F(\theta)
$$

where $T_{1}(Y)$ generates $Y_{1}(\theta)$

- for improvement it must be that

$$
T_{1}\left(Y_{1}(\theta)\right) \leq T_{0}\left(Y_{1}(\theta)\right) \quad \text { for all } \theta
$$

and we can always make $T_{1}(\tilde{Y}) \leq T(\tilde{Y})$ at other points

- hence: (sophisticated) Laffer effect
- Result: there are such Laffer effects (we know from two type case)
- more general results: joint restrictions on...
- tax schedule T
- preference U
- skill distribution F
(note: allocation is implied)
- convert results: joint restrictions on...
- tax schedule T
- preference U
- distribution of output $G(\tilde{Y})$ (where $G(Y(\theta))=F(\theta)$)
(note: skill distribution is implied)

1.5 IC with a continuum

- need to make IC simpler
- necessary: local IC + monotonicity
- also sufficient!
- informally

$$
v(\theta)=\max _{\theta^{\prime}} U\left(c\left(\theta^{\prime}\right), y\left(\theta^{\prime}\right), \theta\right)=U(c(\theta), y(\theta), \theta)
$$

first order condition...

$$
U_{c}\left(c\left(\theta^{\prime}\right), y\left(\theta^{\prime}\right), \theta\right) c^{\prime}\left(\theta^{\prime}\right)+U_{y}\left(c\left(\theta^{\prime}\right), y\left(\theta^{\prime}\right), \theta\right) y^{\prime}\left(\theta^{\prime}\right)=0
$$

or rearranging

$$
\begin{gathered}
{\left[\frac{c^{\prime}\left(\theta^{\prime}\right)}{y^{\prime}\left(\theta^{\prime}\right)}-\operatorname{MRS}\left(c\left(\theta^{\prime}\right), y\left(\theta^{\prime}\right), \theta\right)\right] U_{c}\left(c\left(\theta^{\prime}\right), y\left(\theta^{\prime}\right), \theta\right) y^{\prime}\left(\theta^{\prime}\right)=0} \\
h\left(\theta, \theta^{\prime}\right) g\left(\theta, \theta^{\prime}\right)=0
\end{gathered}
$$

- we want this to hold for $\theta=\theta^{\prime}$ (truth-telling)
- second order condition (informally)

$$
h_{\theta^{\prime}}(\theta, \theta) g(\theta, \theta)+h(\theta, \theta) g_{\theta^{\prime}}(\theta, \theta) \leq 0
$$

Now, either g or h is zero so that we need to worry about the other term. In regions where $g=0$, trivially satisfied. In other regions, with $y^{\prime}>0$ and $h=0$ we need

$$
h_{\theta^{\prime}}(\theta, \theta) \leq 0
$$

but we know that (since $h(\theta, \theta)=0$ over this region):

$$
h_{\theta^{\prime}}(\theta, \theta)+h_{\theta}(\theta, \theta)=0
$$

and we know that $h_{\theta}(\theta, \theta)>0$ by the single crossing condition! QED

- stronger result: not just local SOC but actually a max
- note that $g\left(\theta, \theta^{\prime}\right)>0$
- for $\theta^{\prime}<\theta$ then we have

$$
h\left(\theta, \theta^{\prime}\right)>h\left(\theta^{\prime}, \theta^{\prime}\right)=0
$$

- the reverse is true for $\theta^{\prime}>\theta$

$$
h\left(\theta, \theta^{\prime}\right)<h\left(\theta^{\prime}, \theta^{\prime}\right)=0
$$

- thus, $\theta^{\prime}=\theta$ is optimal
- a better approach:
- change of variables c, y to v, y

$$
\begin{aligned}
v(\theta) & =U(c(\theta), y(\theta), \theta) \\
c(\theta) & =e(v(\theta), y(\theta), \theta)
\end{aligned}
$$

- let's get the local IC in terms of $v . .$.

$$
v(\theta)-U\left(c\left(\theta^{\prime}\right), y\left(\theta^{\prime}\right), \theta\right) \leq 0
$$

and with equality for $\theta^{\prime}=\theta$. So $v(\theta)-U\left(c\left(\theta^{\prime}\right), y\left(\theta^{\prime}\right), \theta\right)$ is maximized over θ at $\theta=\theta^{\prime}$. The FOC must be

$$
v^{\prime}(\theta)-U_{\theta}=0
$$

- more generally, an Envelope theorem implies

$$
v^{\prime}(\theta)=U_{\theta}(c(\theta), y(\theta), \theta)
$$

or the integral version...

$$
v(\theta)=\int^{\theta} U_{\theta}\left(c\left(\theta^{\prime}\right), y\left(\theta^{\prime}\right), \theta^{\prime}\right) d \theta^{\prime}
$$

[Milgrom and Segal]

- Result: v, y is incentive compatible (i.e. implies c, y that is IC) iff EC and monotonicity hold
- Duality: Pareto efficiency iff minimize resources subject to delivering $v(\theta)$ or more

2 Pareto Efficient Income Taxation

- Dual for Pareto efficiency:

$$
\begin{gathered}
\max _{y, v} \int(y(\theta)-e(v(\theta), y(\theta), \theta)) f(\theta) d \theta \\
v^{\prime}(\theta)=U_{\theta}(e(v(\theta), y(\theta), \theta), y(\theta), \theta) \\
v(\theta) \geq \bar{v}(\theta)
\end{gathered}
$$

- where $\{\bar{v}(\theta)\}$ is some parameter
- Remarks:
- from this we can compute $c(\theta)=e(v(\theta), y(\theta), \theta)$ and then with $c(\theta), y(\theta)$ find retention function $R(y)$ and tax function $T(y)$
- in general we will have some multiplier $\zeta(\theta)=\lambda(\theta) f(\theta) / \eta$ on the last constraint (with $\lambda(\theta)=0$ if the constraint is slack)
$-\zeta(\theta)=\lambda(\theta) f(\theta) / \eta$ and $\bar{v}(\theta)$ related
- Solve

$$
\max _{y, v}\left\{\int(y(\theta)-e(v(\theta), y(\theta), \theta)) f(\theta) d \theta+\frac{1}{\eta} \int \lambda(\theta) v(\theta) f(\theta) d \theta\right\}
$$

subject to

$$
v^{\prime}(\theta)=U_{\theta}(e(v(\theta), y(\theta), \theta), y(\theta), \theta)
$$

- equivalently

$$
\frac{1}{\eta} \max _{y, v}\left\{\eta \int(y(\theta)-e(v(\theta), y(\theta), \theta)) f(\theta) d \theta+\int \lambda(\theta) v(\theta) f(\theta) d \theta\right\}
$$

which is the Lagrangian that comes out of the problem with objective (Weflare function?)

$$
\begin{gathered}
\max _{y, v}\left\{\int \lambda(\theta) v(\theta) f(\theta) d \theta\right\} \\
v^{\prime}(\theta)=U_{\theta}(e(v(\theta), y(\theta), \theta), y(\theta), \theta) \\
\int(y(\theta)-e(v(\theta), y(\theta), \theta)) f(\theta) d \theta \leq e
\end{gathered}
$$

for some e (related to η)

- Utilitarian case is then $\lambda(\theta)=1$
- optimal control (v is state and y is control)
- FOCs the same with $\lambda(\theta)=1$ (total multiplier $\zeta(\theta)=f(\theta) / \eta$)
- Form Lagrangian

$$
\begin{aligned}
& L \equiv \int(y(\theta)-e(v(\theta), y(\theta), \theta)) f(\theta) d \theta+\frac{1}{\eta} \int \lambda(\theta) v(\theta) f(\theta) d \theta \\
&+\int \mu^{\prime}(\theta) v(\theta)+\int \mu(\theta) U_{\theta}(e(v(\theta), y(\theta), \theta), y(\theta), \theta)
\end{aligned}
$$

- defining

$$
\hat{\mu}=\mu U_{c}
$$

- FOCs:

$$
\begin{gathered}
-\hat{\mu}^{\prime}(\theta)-\hat{\mu}(\theta) \frac{\partial M R S(c(\theta), y(\theta), \theta)}{\partial c} y^{\prime}(\theta)+\zeta(\theta) U_{c}(c(\theta), y(\theta), \theta)=f(\theta) \\
\frac{\tau(\theta)}{1-\tau(\theta)} f(\theta)=-\hat{\mu}(\theta) \frac{\partial \log M R S(c(\theta), y(\theta), \theta)}{\partial \theta}
\end{gathered}
$$

- Pareto efficiency: multiplier $\zeta(\theta) \geq 0$ so check...

$$
-\hat{\mu}^{\prime}(\theta)-\hat{\mu}(\theta) \frac{\partial M R S(c(\theta), y(\theta), \theta)}{\partial c} y^{\prime}(\theta) \leq f(\theta)
$$

$$
\frac{\tau(\theta)}{1-\tau(\theta)} f(\theta)=-\hat{\mu}(\theta) \frac{\partial \log M R S(c(\theta), y(\theta), \theta)}{\partial \theta}
$$

- take tax system, utility as given...
... hence, take allocation, taxes and utility as given
- observe distribution of output: infer distribution of skills (more later)
- second equation gives $\hat{\mu}$ uniquely, first inequality is restriction
- note: anything goes: there exists an f such that condition is met given U and T
- given f and U : many T are inefficient, many efficient
- tax at top and bottom: $\tau(\bar{\theta}) \leq 0$ and $\tau(\underline{\theta}) \geq 0$
- Utilitarian: set $\zeta(\theta)=f(\theta) / \eta$ and solve ODEs:

$$
\begin{gathered}
-\hat{\mu}^{\prime}(\theta)-\hat{\mu}(\theta) \frac{\partial M R S(c(\theta), y(\theta), \theta)}{\partial c} y^{\prime}(\theta)+\frac{1}{\eta} f(\theta) U_{c}(c(\theta), y(\theta), \theta)=f(\theta) \\
\frac{\tau(\theta)}{1-\tau(\theta)} f(\theta)=-\hat{\mu}(\theta) \frac{\partial \log M R S(c(\theta), y(\theta), \theta)}{\partial \theta}
\end{gathered}
$$

along with $\mu(\underline{\theta})=\mu(\bar{\theta})=0$ [since state v is free at the boundaries; or note the special FOCs for them derived in recitation]

- a bit more involved
- can be done numerically
- special cases: U quasi-linear in c (so that $\frac{\partial \operatorname{MRS}(c(\theta), y(\theta), \theta)}{\partial c}=0$)
- check Diamond and Saez papers
- Saez identification: observe output distribution H...

$$
\begin{gathered}
F(\theta)=H(y(\theta)) \\
f(\theta)=h(y(\theta)) y^{\prime}(\theta)
\end{gathered}
$$

- given U and T we can compute $y(\theta)$ and hence $y^{\prime}(\theta) \ldots$

$$
y^{\prime}(\theta)=\frac{-\frac{\partial \log \operatorname{MRS}(c(\theta), y(\theta), \theta)}{\partial \theta}}{\frac{1}{\varepsilon_{i v}^{*} Y}+\frac{T^{\prime \prime}(Y)}{1-T^{\prime}(Y)}}
$$

- ...nicer to solve for $y^{\prime}(\theta)$ in terms of local conditions (some algebra later; see Recitation)

$$
\begin{aligned}
& -\hat{\hat{\mu}}^{\prime}(\theta)-\hat{\hat{\mu}}(\theta) \frac{\partial M R S(c(\theta), y(\theta), \theta)}{\partial c} \leq h(y(\theta)) \\
& \hat{\hat{\mu}}(\theta)=\frac{T^{\prime}(y)}{1-T^{\prime}(y)} \varepsilon_{w}^{*}(Y) Y \frac{h(y(\theta))}{1+Y \varepsilon_{w}^{*}(Y) \frac{T^{\prime \prime}(Y)}{1-T^{\prime}(Y)}}
\end{aligned}
$$

- (utilitarian case: $\left.-\hat{\mu}^{\prime}(\theta)-\hat{\mu}(\theta) \frac{\partial \operatorname{MRS}(c(\theta), y(\theta), \theta)}{\partial c}=\left(1-\lambda U_{c}\right) h(y(\theta))\right)$
- Saez defines the "virtual density"...

$$
h^{*}(Y)=\frac{h(y)}{1+Y \varepsilon_{w}^{*}(Y) \frac{T^{\prime \prime}(Y)}{1-T^{\prime}(Y)}}=\frac{h(y)}{\Phi(y)}
$$

- after subsituting...

$$
\frac{\tau}{1-\tau} \frac{\varepsilon_{w}^{*}}{\Phi}\left(-\frac{d \log \frac{\tau}{1-\tau}}{d \log y}-\frac{d \log h^{*}}{d \log Y}-1-\frac{d \log \varepsilon_{w}^{*}}{d \log Y}-\frac{\partial M R S}{\partial c} \frac{1}{y}\right) \leq 1
$$

- think through role of each term
- intuition for inefficient tax: Laffer argument
- generalizes: tax at top and bottom: $\tau(\bar{\theta}) \leq 0$ and $\tau(\underline{\theta}) \geq 0$

$$
\frac{d \log h^{*}}{d \log Y}=-\infty \quad \text { or } \quad \frac{d \log h^{*}}{d \log Y}=\infty
$$

- Discussion:

1. anything goes again: exists h^{*} given U and T
2. linear tax optimal? Yes, depends on distribution.
3. maximum level of asymptotic tax rate (many terms cancel)
4. connection with Rawlsian optimum

- observable characteristics: Differential taxation?
- Pareto efficient to ignore? Yes, in some cases...
... new condition is average of previous condition
- Pareto improvement to differentiate? Yes, in some cases...
... if previuos condition is violated for some group

3 Extensive Margin Model

- Diamond (1980): nonlinear taxation with extensive margin (no intensive margin).
- as before, preferences are

$$
U(c, Y, \theta)
$$

- but now
- assume only two possible levels of Y for each θ

$$
\{0, Y(\theta)\}
$$

- $Y(\theta)$ continuous and increasing
- $\theta \in[0, \infty)$
$-Y(0)=0$
- assume some measure N of agents simply cannot work
- for agent θ to prefer work we require

$$
U(c(\theta), Y(\theta), \theta) \geq U(b, 0,0)
$$

- incentive constraint
- like before, compares allocation intended for θ to others'
- previously:
* compared to all other bundles
* binding were neighbours (with single crossing assumptions)
- now: relevant binding constraint is always allocation meant for $\theta=0$ i.e. $Y=$ 0 , so binding constraint skips neighbours, in this sense this is a violation of single crossing
- it might be optimal to make some agents that are capable of working not work, but we will assume instead that we make them all work
- Planning Problem:

$$
\max \left\{N U(b, 0, \theta)+\int U(c(\theta), Y(\theta), \theta) f(\theta) d \theta\right\}
$$

s.t.

$$
\begin{gathered}
N b+\int(c(\theta)-Y(\theta)) f(\theta) d \theta \leq e \\
U(c(\theta), Y(\theta), \theta) \geq U(b, 0,0)
\end{gathered}
$$

- first order conditions:

$$
\begin{gathered}
U_{b}(b, 0,0)=\lambda-\frac{1}{N} \int \mu(\theta) d \theta \\
U_{c}(c(\theta), Y(\theta), \theta)=\lambda+\mu(\theta)
\end{gathered}
$$

and $\mu(\theta) \geq 0$

$$
\mu(\theta)[U(c(\theta), Y(\theta), \theta)-U(b, 0,0)]=0
$$

as well as both constraints holding.

- combining the conditions gives:

$$
U_{c}(c(\theta), Y(\theta), \theta) \leq U_{b}(b, 0,0)+\frac{1}{N} \int \mu(\theta) d \theta<U_{b}(b, 0,0)
$$

as long as the work constraint binds for some agents

- with separable utility $u(c)-v(Y, \theta)$ this implies immediately that

$$
c(\theta)>b
$$

for all θ and that

$$
\lim _{\theta \rightarrow 0} c(\theta)>b
$$

- indeed with separable utility we must have $\mu(\theta)=0$ and $U(c(\theta), Y(\theta), \theta)>U(b, 0,0)$ for low enough θ
- nice case has preferences independent of θ :

$$
u(c, Y, \theta)=U(c, Y)
$$

- then easy to see that defining the equalizing difference

$$
U\left(c^{e}(Y), Y\right)=U(b, 0)
$$

we have that optimal consumption is

$$
c^{*}(Y)=\max \left\{c^{e}(Y), \bar{c}\right\}
$$

where $\bar{c} \equiv\left(u^{\prime}\right)^{-1}(\lambda)>b$

- conclusions:
- we get an upward discontinuity in $c(\theta)$
- more general: symptomatic that marginal tax may be negative
- possible odd result: consumption $c(\theta)$ may not be monotone (could be fixed with additional assumptions) (i.e. marginal taxes may be higher than 100\%)
- comments:
- overall:
* with Utilitarian, less sharp restrictions on marginal taxes Mirrlees model, i.e. here they can be negative or higher than 100%.
* but not clear if less implications for Pareto efficient.
- Here: some people can work, others suffer infinite disutility (i.e. can't work). Diamond's paper has a more general joint distribution between skill and labor disutility. Optimum then needs to determine how many people work, at each skill level.
- Saez combines intensive and extensive margin.
- Planning problem

$$
\max \left\{\iint_{n^{*}(\theta)} U(b, 0, \theta) d n d \theta+\iint^{n^{*}(\theta)} U(c(n), Y(n), \theta) f(\theta, n) d n d \theta\right\}
$$

s.t.

$$
\begin{gathered}
N b+\int(c(\theta)-Y(\theta)) f(\theta) d \theta \leq e \\
U(c(\theta), Y(\theta), \theta) \geq U(b, 0,0)
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

14.471 Public Economics I

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

