2 Different productivity (the Ricardian model)

Two goods, computers and textiles (t-shirts) C and T.
Production in the home country:

$$
\begin{aligned}
y_{C} & =\pi_{C} l_{C} \\
y_{T} & =\pi_{T} l_{T}
\end{aligned}
$$

Home consumers/workers have a total endowment of working hours L.
Foreign consumers/workers have L^{*}. Their productivity is π_{C}^{*} and π_{T}^{*}.

Assumption:

$$
\frac{\pi_{C}}{\pi_{T}}>\frac{\pi_{C}^{*}}{\pi_{T}^{*}}
$$

Home has a comparative advantage in the production of computers.
Example: productivities, π, are:

productivity	C	T
home	3	2
foreign	1	1

Suppose labor is allocated as follows:

labor	C	T
home	10	10
foreign	10	10

then output is

output	C	T
home	30	20
foreign	10	10

Now suppose you transfer labor from T to C at home and from C to T in the foreign country and you reach:

labor	C	T
home	15	5
foreign	0	20

Then output is:

output	C	T
home	45	10
foreign	0	20

The world output of textiles is the same, 30, the output of computers has increased from 40 to 45 .

Now we turn to market arrangements.

2.1 Demand

Suppose preferences are such that the demand for the two goods is

$$
\begin{aligned}
x_{C} & =\alpha \frac{w L}{p_{C}} \\
x_{T} & =(1-\alpha) \frac{w L}{p_{T}}
\end{aligned}
$$

the workers spend a fixed fraction of their income in the two goods. Same for the foreign consumers.

Exercise: show that when preferences are

$$
U\left(x_{C}, x_{T}\right)=\alpha \log x_{C}+(1-\alpha) \log x_{T}
$$

then the demand functions are exactly like that.

2.2 Production

A producer of computers in the home country makes profits:

$$
\begin{aligned}
& p_{C} y_{C}-w l_{C}= \\
& p_{C} \pi_{C} l_{C}-w l_{C}
\end{aligned}
$$

so if

$$
p_{C} \pi_{C}>w
$$

then ther is ∞ demand of labor by the computer sector and we cannot have equilibrium on the labor market, if

$$
p_{C} \pi_{C}<w
$$

there is 0 demand of labor by the computer sector, if

$$
p_{C} \pi_{C}=w
$$

then the computer sector is willing to absorb any amount of workers l_{C}.
Same for other sector, other country.

2.3 Autarky

Now suppose country Home is in autarky.
We need to find prices $\left(p_{C}, p_{T}, w\right)$ such that the labor market is in equilibrium

$$
l_{C}+l_{T}=L
$$

the goods markets are in equilibrium

$$
\begin{aligned}
x_{C} & =y_{C} \\
x_{T} & =y_{T}
\end{aligned}
$$

and firms and consumers are at their optimal choices.
Equilibrium: consumers consume both computers and t-shirts and prices are

$$
\begin{aligned}
p_{C}^{a} & =\frac{w}{\pi_{C}} \\
p_{T}^{a} & =\frac{w}{\pi_{T}}
\end{aligned}
$$

What is the demand for the two goods?

$$
\begin{aligned}
x_{C} & =\alpha \frac{w}{p_{C}^{a}}=\alpha \pi_{C} \\
x_{T} & =(1-\alpha) \frac{w}{p_{T}^{a}}=(1-\alpha) \pi_{T}
\end{aligned}
$$

What is the labor demanded in the two sectors?
Labor inputs in the two sectors

$$
\begin{aligned}
l_{C} & =\frac{y_{C}}{\pi_{C}}=\alpha \frac{w}{p_{C}^{a}} \frac{L}{\pi_{C}}=\alpha L>0 \\
l_{T} & =\frac{y_{T}}{\pi_{T}}=(1-\alpha) \frac{w}{p_{T}^{a}} \frac{L}{\pi_{T}}=(1-\alpha) L>0
\end{aligned}
$$

and equilibrium in labor market is satisfied because

$$
l_{C}+l_{T}=L
$$

Equilibrium relative prices are:

$$
\frac{p_{C}^{a}}{p_{T}^{a}}=\frac{1 / \pi_{C}}{1 / \pi_{T}}=\frac{a_{C}}{a_{T}}
$$

Proportional to the labor requirements a_{C} and a_{T}.
That's good but... how did we find the equilibrium?
Graphical approach: Relative demand and relative supply (as in KO Fig. $2-3$, but in the autarky case for now).

Relative Supply

Supply of the two goods. Just from firms optimal behavior and equilibrium in the labor market.

$$
\begin{align*}
& y_{C}=\left\{\begin{array}{cc}
0 & \text { if } \frac{p_{C}}{p_{T}}<\frac{1 / \pi_{C}}{1 / \pi_{T}} \\
{\left[0, \pi_{C} L\right]} & \text { if } \frac{p_{C}}{p_{T}}=\frac{1 / \pi_{C}}{1 / \pi_{T}} \\
\pi_{C} L & \text { if } \frac{p_{C}}{p_{T}}>\frac{1 / \pi_{C}}{1 / \pi_{T}}
\end{array}\right. \tag{3}\\
& y_{T}=\left\{\begin{array}{cl}
\pi_{T} L & \text { if } \frac{p_{C}}{p_{T}}<\frac{1 / \pi_{C}}{1 / \pi_{T}} \\
{\left[0, \pi_{T} L\right]} & \text { if } \frac{p_{C}}{p_{T}}=\frac{1 / \pi_{C}}{1 / \pi_{T}} \\
0 & \text { if } \frac{p_{C}}{p_{T}}>\frac{1 / \pi_{C}}{1 / \pi_{T}}
\end{array}\right. \tag{4}
\end{align*}
$$

Putting them together we get

$$
\frac{y_{C}}{y_{T}}=\left\{\begin{array}{cl}
0 & \text { if } \frac{p_{C}}{p_{T}}<\frac{1 / \pi_{C}}{1 / \pi_{T}} \\
{[0, \infty)} & \text { if } \frac{p_{C}}{p_{T}}=\frac{1 / \pi_{C}}{1 / \pi_{T}} \\
\infty & \text { if } \frac{p_{C}}{p_{T}}>\frac{1 / \pi_{C}}{1 / \pi_{T}}
\end{array}\right.
$$

This relations already incorporate equilibrium in the labor market.
For example, consider the case $\frac{p_{C}}{p_{T}}<\frac{1 / \pi_{C}}{1 / \pi_{T}}$. This means that

$$
p_{C} \pi_{C}<p_{T} \pi_{T}
$$

suppose that $w<p_{T} \pi_{T}$, then there would be ∞ demand of labor by the textile industry and no equilibrium is possible. Suppose that $w>p_{T} \pi_{T}$, then both sectors would demand 0 labor and no equilibrium is possible. Then we need $w=p_{T} \pi_{T}$, at this wage the computer sector is inactive and all labor must be employed by the textile sector. Therefore in this case $y_{C}=0$ and $y_{T}=\pi_{T} L$.

Exercise: go through same reasoning for the other cases.

Relative Demand

Remember the two demand curves

$$
\begin{aligned}
x_{C} & =\alpha \frac{w L}{p_{C}} \\
x_{T} & =(1-\alpha) \frac{w L}{p_{T}}
\end{aligned}
$$

and we get the relative demand

$$
\frac{x_{C}}{x_{T}}=\frac{\alpha}{1-\alpha} \frac{1}{\frac{p_{C}}{p_{T}}}
$$

Nice property: the relative demand does not depend on the wages, so we don't need to worry about that.

Equilibrium

$$
\frac{y_{C}}{y_{T}}=\frac{x_{C}}{x_{T}}
$$

you can show that only equilibrium is

$$
\frac{p_{C}^{a}}{p_{T}^{a}}=\frac{1 / \pi_{C}}{1 / \pi_{T}}
$$

2.4 Trade

Now we allow them to trade. We get total supply of the two countries.
Remember that

$$
\frac{1 / \pi_{C}}{1 / \pi_{T}}<\frac{1 / \pi_{C}^{*}}{1 / \pi_{T}^{*}}
$$

Total Relative Supply

$$
\frac{y_{C}+y_{C}^{*}}{y_{T}+y_{T}^{*}}=\left\{\begin{array}{cc}
0 & \text { if } \frac{p_{C}}{p_{T}}<\frac{1 / \pi_{C}}{1 / \pi_{T}} \\
{\left[0, \frac{\pi_{C} L}{\pi_{T} L^{*}}\right]} & \text { if } \frac{p_{C}}{p_{T}}=\frac{1 / \pi_{C}}{1 / \pi_{T}} \\
\frac{\pi_{C} L}{\pi_{T} L^{*}} & \text { if } \frac{1 / \pi_{C}}{1 / \pi_{T}}<\frac{p_{C}}{p_{T}}<\frac{1 / \pi_{C}^{*}}{1 / \pi_{T}^{*}} \\
\infty & \text { if } \frac{p_{C}}{p_{T}}>\frac{1 / \pi_{C}^{*}}{1 / \pi_{T}^{*}}
\end{array}\right.
$$

(Exercise: redo the steps to derive this relation like in class.)
Total Relative Demand is just:

$$
\frac{x_{C}+x_{C}^{*}}{x_{T}+x_{T}^{*}}=\frac{\alpha}{1-\alpha} \frac{1}{p_{C} / p_{T}}
$$

World equilibrium: See Figure 2-3 in KO and discussion there.

2.5 Gains from trade

What happens to wages?
Real wages: in terms of the two goods.

$$
\frac{w}{p_{T}} \geq \frac{w^{a}}{p_{T}^{a}}
$$

we know that

$$
w^{a}=p_{T}^{a} \pi_{T}
$$

so

$$
\frac{w^{a}}{p_{T}^{a}}=\pi_{T}
$$

Now we know that

$$
w \geq p_{T} \pi_{T}
$$

so

$$
\frac{w}{p_{T}} \geq \pi=\frac{w^{a}}{p_{T}^{a}}
$$

Exercise: show that

$$
\frac{w}{p_{C}} \geq \frac{w^{a}}{p_{C}^{a}}
$$

Show that in the case of full specialization these inequalities are strict, the workers are strictly better off under trade.

