14.54 International Economics Handout 3

Guido Lorenzoni

Fall 2006

1 Sorting and Inequality

Consider two countries, Home and Foreign.

In the Home country there are two types of workers: english speaking guides,

E, and drivers, D. There are 30 guides and 20 drivers.

Production requires a team of two workers.

The table shows the output in dollars you get from each team.

 $\begin{array}{rcl} (E,E) & \to & 12 \mbox{ (a Travel agency)} \\ (E,D) & \to & 10 \mbox{ (a Bus tour)} \\ (D,D) & \to & 3 \mbox{ (a Local bus service)} \end{array}$

Let's first look at an efficient allocation in the Home country, when the country is closed.

1.1 Efficient allocation

We want to solve the problem:

$$\begin{array}{ll} \max & 12q_T + 10q_B + 3q_L \\ 2q_T + q_B \leq 30 \\ q_B + 2q_L \leq 20 \end{array}$$

Solution is: 20 teams produce bus tours and 5 teams produce travel agency services.

To see this notice that if we have two teams

$$(E, E)$$
 and $(D, D) \to 12 + 3 = 15$

then you can rearrange them and get

$$(E, D)$$
 and $(E, D) \rightarrow 10 + 10 = 20 > 15$

Cite as: Guido Lorenzoni, course materials for 14.54 International Trade, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

1.2 Market

A market can achieve the efficient allocation with wages

$$\begin{array}{rcl} w^a_E &=& 6\\ w^a_D &=& 4 \end{array}$$

Check that this way both teams break even and a team that produces local bus would not be viable

$$3 < 2w_D$$

Excercise: Solve the linear programming problem above and show that the Lagrange multipliers on the two constraints are actually $\lambda_E = 6$ and $\lambda_C = 4$, they are the "shadow wages".

1.3 Globalization

Now suppose there is a Foreign country with 70 workers of type M (managers). Now three types of new teams can be formed

$$(M, M) \rightarrow 30$$
 (a Something)
 $(M, E) \rightarrow 25$ (a Call center)
 $(M, D) \rightarrow 0$ (a Nothing)

In Autarky the Foreign country is producing only Somethings' and the wage of the managers is

$$w_{M}^{a} = 15.$$

Now we allow for world integration. You can write the big linear program. The solution will be

20	(M, M) teams
30	(M, E) teams
10	(D, D) teams

and world output is

$$20 * 30 + 30 * 25 + 10 * 3$$

Why the (M, E) teams make (E, D) teams split? Suppose you start from three teams

$$(M, M), (E, D), (E, D) \rightarrow 30 + 10 + 10 = 50$$

now I can rearrange them and have

$$(M, E), (M, E), (D, D) \rightarrow 25 + 25 + 3 = 53 > 50$$

so more efficient allocation.

1.4 Wages and Inequality

Again we can achieve the efficient world allocation of resources by setting the appropriate wages. We have

$$w_E = 10$$

$$w_D = 1.5$$

$$w_M = 15$$

and inequality increases in the Home country (stays the same in Foreign because all the same...)

$$w_E = 10 > 6 = w_E^a,$$

 $w_D = 1.5 < 4 = w_D^a.$