14.54 International Economics Handout 3

Guido Lorenzoni

Fall 2006

1 Sorting and Inequality

Consider two countries, Home and Foreign.
In the Home country there are two types of workers: english speaking guides, E, and drivers, D. There are 30 guides and 20 drivers.

Production requires a team of two workers.
The table shows the output in dollars you get from each team.

$$
\begin{aligned}
& (E, E) \rightarrow 12 \text { (a Travel agency) } \\
& (E, D) \rightarrow 10 \text { (a Bus tour) } \\
& (D, D) \rightarrow 3 \text { (a Local bus service) }
\end{aligned}
$$

Let's first look at an efficient allocation in the Home country, when the country is closed.

1.1 Efficient allocation

We want to solve the problem:

$$
\begin{array}{ll}
\max & 12 q_{T}+10 q_{B}+3 q_{L} \\
& 2 q_{T}+q_{B} \leq 30 \\
& q_{B}+2 q_{L} \leq 20
\end{array}
$$

Solution is: 20 teams produce bus tours and 5 teams produce travel agency services.

To see this notice that if we have two teams

$$
(E, E) \text { and }(D, D) \rightarrow 12+3=15
$$

then you can rearrange them and get

$$
(E, D) \text { and }(E, D) \rightarrow 10+10=20>15
$$

1.2 Market

A market can achieve the efficient allocation with wages

$$
\begin{aligned}
w_{E}^{a} & =6 \\
w_{D}^{a} & =4
\end{aligned}
$$

Check that this way both teams break even and a team that produces local bus would not be viable

$$
3<2 w_{D}
$$

Excercise: Solve the linear programming problem above and show that the Lagrange multipliers on the two constraints are actually $\lambda_{E}=6$ and $\lambda_{C}=4$, they are the "shadow wages".

1.3 Globalization

Now suppose there is a Foreign country with 70 workers of type M (managers).
Now three types of new teams can be formed

$$
\begin{aligned}
(M, M) & \rightarrow 30 \text { (a Something) } \\
(M, E) & \rightarrow 25 \text { (a Call center) } \\
(M, D) & \rightarrow 0 \text { (a Nothing) }
\end{aligned}
$$

In Autarky the Foreign country is producing only Somethings' and the wage of the managers is

$$
w_{M}^{a}=15 .
$$

Now we allow for world integration. You can write the big linear program.
The solution will be

$$
\begin{aligned}
& 20(M, M) \text { teams } \\
& 30(M, E) \text { teams } \\
& 10(D, D) \text { teams }
\end{aligned}
$$

and world output is

$$
20 * 30+30 * 25+10 * 3
$$

Why the (M, E) teams make (E, D) teams split?
Suppose you start from three teams

$$
(M, M),(E, D),(E, D) \rightarrow 30+10+10=50
$$

now I can rearrange them and have

$$
(M, E),(M, E),(D, D) \rightarrow 25+25+3=53>50
$$

so more efficient allocation.

1.4 Wages and Inequality

Again we can achieve the efficient world allocation of resources by setting the appropriate wages. We have

$$
\begin{aligned}
w_{E} & =10 \\
w_{D} & =1.5 \\
w_{M} & =15
\end{aligned}
$$

and inequality increases in the Home country (stays the same in Foreign because all the same...)

$$
\begin{aligned}
& w_{E}=10>6=w_{E}^{a} \\
& w_{D}=1.5<4=w_{D}^{a}
\end{aligned}
$$

