## Early life determinants of long-run outcomes

Heidi L. Williams

MIT 14.662

Spring 2015

### Early life determinants of long-run outcomes

#### Almond and Currie's 2011 Handbook of Labor Economics chapter

- Growing recognition among economists that early life conditions can have persistent impacts on later life outcomes
- Chapter reviews and synthesizes literature on:
  - Early childhood influences on later life outcomes
  - Policies aiming to ameliorate effects of negative shocks
- Take-away: "Child and family characteristics measured at school entry do as much to explain future outcomes as factors that labor economists have more traditionally focused on, such as years of education. Yet while children can be permanently damaged at this age, an important message is that the damage can often be remedied."

## Roadmap for today

### Handbook chapter: Almond and Currie (2011)

- Preliminaries: models of health/human capital
- Prenatal environments:
  - Birth weight: Black, Devereux, and Salvanes (2007)
- Policy responses:
  - ▶ Infant health care: Bharadwaj, Løken, and Nielson (2011)
  - ► Head Start: Ludwig and Miller (2007)
  - ► Foster care: Doyle (2007)

- Preliminaries
- Prenatal environments
- Early childhood environments
- Policy responses
- Wrap-up

#### **Preliminaries**

Almond and Currie present a theoretical framework to illustrate why evidence of a causal relationship between a shock in early childhood and a future outcome says little about whether the relationship in question is biological or immutable

 Parental/social responses are likely to be extremely important in either magnifying or mitigating the effects of a shock

### Traditional models of "health capital"

### Grossman (1972)

- Models health as a stock variable that depreciates over time, and which can increase due to health investments
- Structure of depreciation implies that as individuals age, effects of early childhood health stock and health investments become progressively less important over time

In contrast: "early childhood" research asks whether health and early life investments have sustained effects on adult outcomes

### Two-period model

Two-period model of childhood production of health or human capital h accumulated at the completion of childhood:

$$h = A[\gamma I_1 + (1 - \gamma)I_2]$$

 $I_1 \simeq \text{investments during childhood through age 5}$ 

 $\it I_2 \simeq {\rm investments}$  during childhood after age 5

- Leave open the question of whether there is depreciation
- For a given level of investment  $(I_1 + I_2)$ , allocation of investment across periods matters if  $\gamma \neq 0.5$
- If  $\gamma A>1$ , certain childhood periods may exert a disproportionate effect on later life outcomes that does not necessarily decline monotonically with age

#### Functional form

Somewhat extreme functional form:  $h = A[\gamma I_1 + (1 - \gamma)I_2]$   $\Rightarrow$  first and second period investments are perfect substitutes

Heckman (2007) proposes a more flexible CES functional form:

$$h = A[\gamma I_1^{\phi} + (1 - \gamma)I_2^{\phi}]^{\frac{1}{\phi}}$$

- For a given level of investment  $(I_1 + I_2)$ , how the allocation of investment across periods will affect h depends on elasticity of substitution  $(\frac{1}{1-\phi})$  and share parameter  $(\gamma)$
- Simplifies to the more restrictive functional form if  $\phi=1$   $\Rightarrow$  investments are perfectly substitutable

8 / 53

## Using this framework

Almond and Currie consider effect of exogenous shocks  $\mu_g$  to health investments that occur during the first childhood period

- Fixed investments: "biological" relationship (holds behavior fixed)
- Responsive investments
  - Key idea: unless investment responses are costless, damage estimates of  $\frac{\partial h}{\partial \mu_g}$  will tend to understate total costs (anecdote: my dad)
  - ▶ Investment responses can be either reinforcing or compensatory
  - Recent papers have used e.g. time use data to measure parental investments (example: Royer 2009)
  - ▶ Almond-Currie conclude "...as of now there is little evidence that parents in developed countries systematically reinforce or compensate for early childhood events"

- Preliminaries
- Prenatal environments
- Early childhood environments
- Policy responses
- Wrap-up

#### Prenatal environments

### So-called "Barker hypothesis"

- Disruptions to prenatal environment presage chronic health conditions in adulthood, including heart disease and diabetes
  - ▶ Rapid prenatal growth ⇒ long-term effects
  - Contrasts with idea of mothers as an effective "buffer"
- See also Almond-Currie (JEP forthcoming)

#### Prenatal environments

Almond-Currie review evidence on three sets of prenatal factors:

- 1 Maternal health (e.g. Almond 2006)
- 2 Economic shocks (e.g. Cutler, Miller, and Norton 2007)
- Pollution (e.g. Chay and Greenstone 2003)

Focus here on link between birth weight and long-run outcomes

• Black, Devereux, and Salvanes (2007)

## Birth weight and long-run outcomes

### Earliest study I know of: Currie-Hyson (1999)

- British National Child Development Survey data
- Conditional on (rich) observables: low birth weight associated with long-term disadvantages in self-reported health status, educational attainment, and labor market outcomes
- But: birth weight routinely found to be strongly associated with socio-economic background variables, some of which are likely unobserved 

  difficult to ascertain a causal link

#### Twin studies

### Earliest study I know of: Behrman-Rosenweig (2004)

- Schooling of identical female twins  $\frac{1}{3}$  of a year longer for each pound increase in birth weight (454 grams)
- Important advance, but small sample (402 twin pairs)

#### Three subsequent twin studies:

- Canada: Oreopoulos, Stabile, Walld, and Roos (2009)
- Norway: Black, Devereux, and Salvanes (2007)
- US: Royer (2009) [also looks at investments]

## Aside: Almond, Chay, and Lee (2005)

Thoughtful, important paper on twin estimation

- Investigate effect of LBW on health care costs
- OLS and twin FE estimates

Emphasize OLS/FE difference can support two interpretations:

- FE could "solve" OVB
- ② Different sources of variation in birth weight could have different effects on child outcomes
  - ▶ Birth weight itself not a policy variable
  - ▶ One focus: short gestation vs. intrauterine growth retardation
  - Alternative policies could have different effects

# Black, Devereux, and Salvanes (2007)

- Examine short- and long-run effects of birth weight
- Birth records for the census of Norwegian births from 1967-97
  - Link to administrative data: infant (one-year) mortality, APGAR, height, BMI, IQ, education, labor market outcomes, birth weight of first child...

### Table 3

### Table 3: pooled OLS and twin FE estimates

• For mortality, pooled OLS coefficient of 280 implies that a 10 percent increase in birth weight would reduce 1-year mortality by approximately 28 deaths per 1,000 births. The twin fixed effects coefficient of 41 is statistically significant but only  $\frac{1}{6}$  the size of the OLS coefficient

Short-run outcomes: OLS > IV

ullet Long-run outcomes: OLS  $\sim$  IV

### Table 3

TABLE III
REGRESSION RESULTS: TWINS SAMPLE COEFFICIENT ON LN (BIETH WEIGHT)

| Dependent<br>variable | Singleton sample                 |                         | Twins sample |                    |
|-----------------------|----------------------------------|-------------------------|--------------|--------------------|
|                       | OLS                              | Family fixed<br>effects | OLS          | Twin fixed offects |
| One-year              |                                  |                         |              |                    |
| mortality             | -123.46** (1.71) -186.71** (.69) |                         |              |                    |
| N                     | 1,253,546                        |                         | 33,366       |                    |
| Five minute           |                                  |                         |              |                    |
| APGAR score           |                                  | 1.08** (.01)            | 1.46** (.06) |                    |
| N                     | 674,577                          |                         | 21,580       |                    |
| Height (males         |                                  |                         |              |                    |
| only)                 | 11.03** (.11)                    | 7.33** (.12)            | 7.48** (.55) | 5.68** (.56)       |
| N                     | 203,741                          |                         | 5,392        |                    |
| BMI (males only)      | -6.19 (7.67)                     | -22.22 (15.23)          | .56** (.23)  | 1.12** (.30)       |
| N                     | 203,378                          |                         | 5,372        |                    |
| Underweight           | 09** (.004)                      | 07** (.01)              | 07** (.02)   | 11** (.04)         |
| N                     | 203,378                          |                         | 5,372        |                    |
| Overweight            | .08** (.01)                      | .08** (.01)             | .03 (.02)    | .09** (.04)        |
| N                     | 203,378                          |                         | 5,372        |                    |
| IQ (males only)       | .91** (.03)                      | .58** (.04)             | .48** (.14)  | .62** (.18)        |
| N                     | 184,045                          |                         | 4.920        |                    |
| High school           |                                  |                         |              |                    |
| completion            | .16** (.01)                      | .04** (.01)             | .07** (.02)  | .09** (.04)        |
| N                     | 536,020                          |                         | 13.106       |                    |
| Full-time work        | .17** (.004)                     |                         | .29** (.02)  |                    |
| N                     | 368,582                          |                         | 10.388       |                    |
| In(earnings) FT       | .09** (.01)                      | .08** (.01)             | .09** (.03)  | .12** (.06)        |
| N                     | 239.906                          |                         | 5.952        |                    |
| ln(birth weight of    |                                  |                         |              | ā                  |
| first child)          | .25** (.01)                      | .13** (.01)             | 18** (04)    | .15** (.06)        |
| N                     | 63.842                           |                         | 1.962        |                    |

Standard errors are in parentheses. The control variables we use in the OLS estimation are year- and month-of-birth dummies, indicators for mother's education (one for each year), indicators for birth order, indicators for mother's year of birth, and an indicator for the sex of the child. Family fixed effects regressions include all of the above minus mother's education and mother's year of birth. Twin fixed effects regressions include indicators for sex and birth order of the twin (either first born or second horn twin). Both crosssectional and fixed effects regressions for height, RML and IQ also include indicator variables for the year the boy was tested by the military. High school completion indicates whether or not the individual has completed at least twelve years of schooling and is restricted to those twenty one and older. The IQ measure is generated from a composite score from three speeded IQ tests—arithmetic, word similarities, and figures—and is reported in stanine (Standard Nine) units. Earnings are measured as total pension-qualifying earnings reported in the tax registry. These are not topcoded and include labor earnings, taxable sick benefits, unemployment benefits, parental leave payments, and pensions. We restrict attention to individuals aged at least twenty-five. Working full-time indicates whether individuals are full-time, full-year workers. To identify this group, we use the fact that our dataset identifies individuals who are employed and working full time (30+ hours per week) at one particular point in the year (in the second quarter in the years 1986-1995 and in the fourth quarter (hereafter). We label these individuals as full-time workers. For In(birth weight) of child, the sample consists of women born between 1967 and 1988 whose first births occurred by 2004. If the first hirth is a twin birth, the woman is dropped from the sample.

Denotes statistically significant at the 5 percent level.
Denotes statistically significant at the 10 percent level.

<sup>©</sup> Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

### Selective mortality

Twin pairs experiencing mortality dropped from the sample

- Time-series patterns consistent with idea that later life effects larger when sample includes more twins on margin of survival
  - Impact of birthweight on later outcomes has increased over time, as twin infant mortality has declined
- Investigate heterogeneity: APGAR-birth weight correlation
  - Birthweight has a larger effect on APGAR scores for the full sample of twin births, relative to the sample of twin births in which both twins live
- Taken together, authors conclude survival-induced selection bias most likely understates effects of birth weight on adult outcomes

- Preliminaries
- Prenatal environments
- 3 Early childhood environments
- Policy responses
- Wrap-up

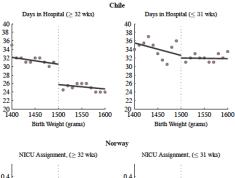
### Early childhood environments

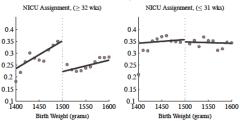
"Early childhood environment" (birth to age 5)

Almond and Currie (2011) provide a comprehensive review:

- Infectious diseases (e.g. Chay et al. 2009)
- Health status (e.g. Smith 2009)
- Home environment (e.g. Rossin 2011)
- Pollution/toxins (e.g. Reyes 2007)

Focus here: infant health inputs and academic achievement


Bharadwaj, Løken, and Nielson (2011)


# Bharadwaj, Løken, and Nielson (2011)

- Quantify returns to medical spending on at-risk newborns
- Valuing non-health benefits important for health/social policy
- Variation: rules/recommendations generating discontinuity in health inputs at VLBW threshold at 1500 grams
  - ► Follows-up Almond *et al.* (2010) on US infants: estimate returns in terms of reduced probability of mortality
  - ► Key idea: infants at 1490 and 1510 should be similar in underlying health, but receive very different health inputs
    - $\Rightarrow$  can apply a regression discontinuity design
- Data: Chile and Norway
  - ▶ Recommendations generate a nice placebo check: 31 weeks

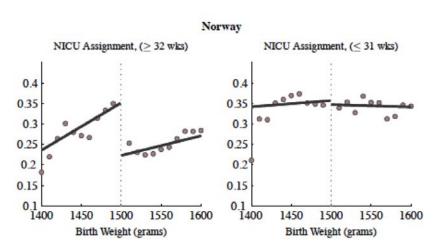
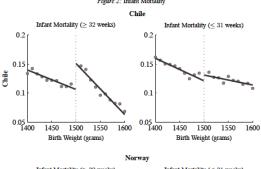
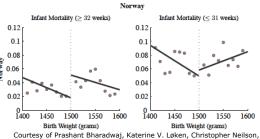

## Figure 1: Infant health inputs (Chile)

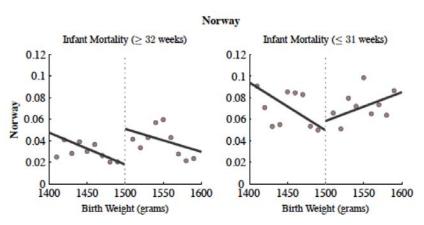
Figure 1: Treatments around 1500 grams





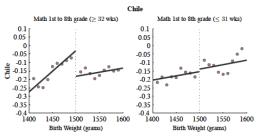


## Figure 1: Infant health inputs (Norway)

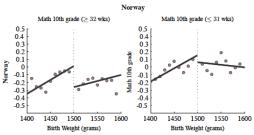



# Figure 2: One-year mortality (Chile)









# Figure 2: One-year mortality (Norway)



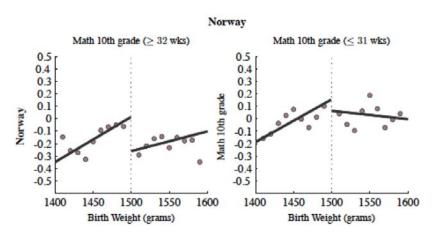
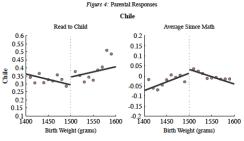
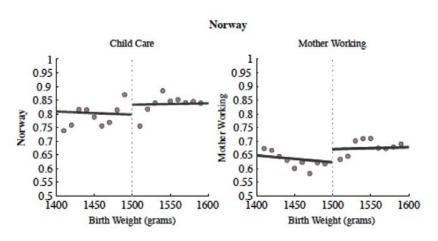

### Figure 3: School performance (Chile)

Figure 3: School Performance






## Figure 3: School performance (Norway)




# Figure 4: Parental investments (Chile)





## Figure 4: Parental investments (Norway)



- Preliminaries
- 2 Prenatal environments
- Early childhood environments
- Policy responses
- Wrap-up

### Policy responses

Prenatal/early childhood factors can influence on later outcomes

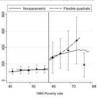
- On its own, little to say about the effectiveness of remediation
- Almond-Currie review evidence on:
  - ▶ Income transfer programs (e.g. Dahl and Lochner 2005)
  - ► "Near cash" programs (e.g. Almond et al. forthcoming)
  - ► Early intervention programs (e.g. Olds' home nurse visits)
  - ▶ Health insurance (e.g. Hanratty 1996)

Focus here: Head Start and foster care

- Head Start: Ludwig-Miller (2007)
- Foster care: Doyle (2007)

### Head Start

- Currie-Thomas (1995): sibling FE
  - ▶ No within-family differences in e.g. birth weight
  - Some time-varying characteristics of concern
  - Data suggests positive effects on educational attainment
- Deming (2009): long-term follow-up
  - Argues projected earnings gain sufficient to offset program cost
- Ludwig and Miller (2007): 1965 program introduction


# Ludwig and Miller (2007)

When initially established, Head Start provided assistance to the 300 poorest counties to develop Head Start proposals

- "New" data (NARA): led to a substantial and persistent discontinuity in Head Start funding and participation rates
- No discontinuity in other federal per-capita spending
- Large drop in mortality from "Head Start causes"
- Suggestive effects on educational attainment

### Figure 4: 1968 Head Start \$ per 4-year-old



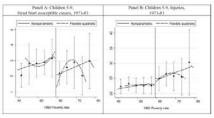


Panel B: 1972 Head Start funding per 4 year old



FIGURE II

Estimated Discontinuity in Head Start Funding per Four-Year-Old, National
Archives. (A) 1968 Head Start funding per four-year-old and (B) 1972 Head
Start funding per four-year-old


Note: Each yeard shows the transparent or united useful into for the function. Provincing 1600 countries the transparent or united useful into for the function relating 1600 countries (1600 countries) and the total of the transparent or united useful as the implied descentitually is using a bandwidth of 18, a parametric studies (abaded into that uses a quadratic to model of 18, and raw cell means triangles) and their to be present confidence intervals them? from grouping the data into five categories on each side of the cutoff for counties with 1900 poverty ratios in the five categories on each side of the cutoff for counties with 1900 poverty ratios for countries with 1800 poverty ratios.

Testal = 1,10, bandwidth = 18, Panel B Estimated nonparametric discontinuity = 800.07 tratal = 0.31, bandwidth = 18, panel B Estimated nonparametric discontinuity =

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more

information, see http://ocw.mit.edu/help/faq-fair-use/.

## Figure 4: Mortality



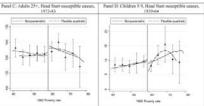



FIGURE IV

Estimated Discontinuities at OEO Cutoff in Mortality Rates per 100,000 for Children and Adults, from Causes Affected by Head Start and from Injuries Note: Each panel shows the nonpurametric estimate (solid line) for the function relating 1900 county powerty rate to the dependent variable [mcf]. from (3) in the text las well as the implied discontinuity (a) using a bandwidth of 18, a parametric estimate (dashed line) that uses a quadratic to node! mcf]., and raw cell means trirangles! and their 95 percent confidence intervals (bars) from grouping the data into five categories on each safe of the cutoff for counties with 1960 powerly rates from 40 to 80 percent. Panel A. Estimated nonparametric discontinuity — 1.198
— 1.8. Panel B. Estimated nonparametric discontinuity — 1.198
— 1.8. Panel B. Estimated nonparametric discontinuity — 1.016
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.076
— 1.07

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/help/faq-fair-use/">http://ocw.mit.edu/help/faq-fair-use/</a>.

Foster care: Doyle (2007)

Important and thoughtful series of papers investigating child welfare service decisions over whether to leave abused or neglected children in their home, or to place them in foster care

- Key idea: removal tendency of child protection investigators
- Quasi-conditionally random assignment to investigators
- IV/marginal treatment effects framework
- New data: child welfare records linked to juvenile delinquency, teen motherhood, employment, and earnings

## LATE: Conditions for interpretation

### Usual conditions required for LATE interpretation:

- First stage: instrument associated with foster care placement
- **2** Exclusion restriction: Z is not in the outcome equation
- Monotonicity: any child removed by lenient investigator would also be removed by strict one; child not removed by strict case manager would not be removed by lenient one

### Instrument: Placement decision model

Investigators observe cases along a distribution of abuse levels heta

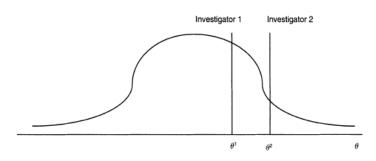



FIGURE 1. ABUSE THRESHOLDS FOR REMOVAL

#### Instrument: Placement decision model

- Investigator types are defined by the threshold abuse level required to recommend placement
- Each type observes same abuse levels ⇒ types characterized by fraction of children recommended for placement (Z)
- Comparison of outcomes across investigator types focuses on variation in placement among marginal cases

### Outcome variables

#### Three samples:

- Delinquency sample (Cook County)
- Teen motherhood sample (females)
- Employment sample

### Table 2: Randomization check

Table 2—Child Characteristics and Case Manager Assignment: Delinquency Sample

| Dependent variable: Case mano<br>Variable | nger removal differential                    | Coefficient  | ,     | p-value |  |
|-------------------------------------------|----------------------------------------------|--------------|-------|---------|--|
| Initial reporter                          | Physician                                    | -0.006       | -0.81 | 0.416   |  |
| (Other reporter excluded)                 | School                                       | -0.005       | -0.74 | 0.457   |  |
| (other reporter excludes)                 | Police                                       | -0.008       | -1.11 | 0.269   |  |
|                                           | Family                                       | -0.003       | -0.52 | 0.605   |  |
|                                           | Neighbor                                     | -0.005       | -0.73 | 0.464   |  |
|                                           | Other government                             | -0.007       | -0.96 | 0.339   |  |
|                                           | Anonymous                                    | -0.007       | -1.07 | 0.287   |  |
| A se at second                            | Age 6                                        | 0.005        | 0.41  | 0.679   |  |
| Age at report                             |                                              |              |       | 0.079   |  |
| (Youngest age excluded)                   | Age 7                                        | 0.012        | 0.90  |         |  |
|                                           | Age 8                                        |              |       | 0.367   |  |
|                                           | Age 9                                        | 0.015        | 0.72  | 0.156   |  |
|                                           | Age 10                                       | 0.008        | 0.72  | 0.470   |  |
|                                           | Age II                                       | 0.009        | 0.94  | 0.346   |  |
|                                           | Age 12                                       | 0.010        | 0.99  | 0.324   |  |
|                                           | Age 13                                       | 0.013        | 1.26  | 0.207   |  |
|                                           | Age 14                                       | 0.009        | 0.91  | 0.366   |  |
|                                           | Age 15                                       | 0.009        | 0.89  | 0.373   |  |
| Sex                                       | Boy                                          | -0.002       | -1.20 | 0.232   |  |
| Race/ethnicity                            | White                                        | -0.014       | -1.32 | 0.186   |  |
| (Other race excluded)                     | African American                             | -0.015       | -1.22 | 0.224   |  |
| (out the timesto)                         | Hispanic                                     | -0.012       | -0.88 | 0.377   |  |
| Allegation                                | Physical abuse                               | -0.002       | -0.43 | 0.668   |  |
| (Other neglect excluded)                  | Substantial risk of harm                     | -0.002       | -0.94 | 0.348   |  |
| (Other neglect excluded)                  | Other abuse                                  | 0.003        | 0.43  | 0.670   |  |
|                                           | Lack of supervision                          | -0.005       | -0.98 | 0.325   |  |
|                                           | Environmental neglect                        | -0.007       | -1.29 | 0.199   |  |
|                                           | Mean of dependent variable                   | 0.0001       |       |         |  |
|                                           | Standard deviation                           | 0.0921       |       |         |  |
|                                           | F-statistic of joint significance<br>p-value | 0.84<br>0.75 |       |         |  |
|                                           | Number of case managers                      | 409          |       |         |  |
|                                           | Observations                                 | 15.039       |       |         |  |

Note: t-statistics and F-statistic are calculated using standard errors clustered by case manager.

## Table 3: *F*-test for joint significance

TABLE 3—CHILD CHARACTERISTICS AND CASE MANAGER ASSIGNMENT

Dependent variable: Case manager removal differential

| Sample:                                  | Delinquency<br>(1) | Teen motherhood<br>(2) | Employment<br>(3) |  |
|------------------------------------------|--------------------|------------------------|-------------------|--|
| F-statistic of joint significance        | 0.84<br>0.75       | 1.07<br>0.34           | 0.96<br>0.54      |  |
| Mean of dependent variable               | 0.0001             | -0.0007                | -0.0007           |  |
| Standard deviation of dependent variable | 0.0921             | 0.1035                 | 0.0729            |  |
| Number of case managers                  | 409                | 705                    | 815               |  |
| Observations                             | 15,039             | 20,091                 | 30,415            |  |

Notes: All models include full controls (individual year, month, and age indicators). F-statistics are calculated using standard errors clustered by case manager.

 $\label{prop:courtesy} \mbox{ Courtesy of Josephy J. Doyle Jr. and the American Economic Association. Used with permission.}$ 

# Table 4: First stage (delinquency sample)

TABLE 4—CASE MANAGER ASSIGNMENT AND FOSTER CARE PLACEMENT: JUVENILE DELINQUENCY SAMPLE

Dependent variable: Case manager removal differential

|                           | Model:                                                     | Probit                 |      | F       | robit       |      |         |
|---------------------------|------------------------------------------------------------|------------------------|------|---------|-------------|------|---------|
|                           |                                                            | Coefficient            | S.E. | p-value | Coefficient | S.E. | p-value |
| Key explanatory variables | Case manager<br>removal differential                       | 0.30                   | 0.07 | 0.00    | 0.27        | 0.05 | 0.00    |
| Initial reporter          | Physician                                                  |                        |      |         | 0.10        | 0.03 | 0.00    |
| (Other reporter excluded) | School                                                     |                        |      |         | -0.02       | 0.03 | 0.43    |
|                           | Police                                                     |                        |      |         | 0.14        | 0.03 | 0.00    |
|                           | Family                                                     |                        |      |         | 0.05        | 0.03 | 0.06    |
|                           | Neighbor                                                   |                        |      |         | 0.02        | 0.03 | 0.53    |
|                           | Other government                                           |                        |      |         | 0.07        | 0.03 | 0.03    |
|                           | Anonymous                                                  |                        |      |         | -0.06       | 0.03 | 0.02    |
| Age at report             | Age 6                                                      |                        |      |         | 0.05        | 0.05 | 0.21    |
| (Youngest age excluded)   | Age 7                                                      |                        |      |         | 0.05        | 0.04 | 0.18    |
|                           | Age 8                                                      |                        |      |         | 0.02        | 0.04 | 0.66    |
|                           | Age 9                                                      |                        |      |         | 0.03        | 0.04 | 0.44    |
|                           | Age 10                                                     |                        |      |         | 0.03        | 0.04 | 0.42    |
|                           | Age 11                                                     |                        |      |         | 0.02        | 0.04 | 0.55    |
|                           | Age 12                                                     |                        |      |         | 0.00        | 0.04 | 0.97    |
|                           | Age 13                                                     |                        |      |         | -0.02       | 0.04 | 0.63    |
|                           | Age 14                                                     |                        |      |         | -0.04       | 0.04 | 0.32    |
|                           | Age 15                                                     |                        |      |         | -0.07       | 0.03 | 0.08    |
| Sex                       | Boy                                                        |                        |      |         | -0.01       | 0.01 | 0.14    |
| Race/ethnicity            | White                                                      |                        |      |         | 0.00        | 0.05 | 0.95    |
| (Other race excluded)     | African American                                           |                        |      |         | 0.11        | 0.04 | 0.02    |
|                           | Hispanic                                                   |                        |      |         | -0.03       | 0.05 | 0.50    |
| Allegation                | Physical abuse                                             |                        |      |         | -0.07       | 0.02 | 0.00    |
| (Other neglect excluded)  | Substantial risk of harm                                   |                        |      |         | 0.00        | 0.02 | 0.88    |
|                           | Other abuse                                                |                        |      |         | -0.09       | 0.02 | 0.00    |
|                           | Lack of supervision                                        |                        |      |         | 0.00        | 0.02 | 0.89    |
|                           | Environmental neglect                                      |                        |      |         | -0.08       | 0.02 | 0.00    |
|                           | Chi-squared (1) stat.<br>Mean of dep. var.<br>Observations | 17.9<br>0.27<br>15.039 |      |         | 27.8        |      |         |

Note: Marginal effects and standard errors clustered at the case manager level are reported

# Table 5: First stage (all samples)

TABLE 5-CASE MANAGER ASSIGNMENT AS A PREDICTOR OF REMOVAL

| Dependent variable: Foster care place | rment              |         |             |             |                   |         |  |
|---------------------------------------|--------------------|---------|-------------|-------------|-------------------|---------|--|
|                                       | Delinquency sample |         | Teen mother | hood sample | Employment sample |         |  |
|                                       | (1)                | (2)     | (3)         | (4)         | (5)               | (6)     |  |
| Case manager removal differential     | 0.301              | 0.274   | 0.231       | 0.204       | 0.327             | 0.288   |  |
| •                                     | (0.071)            | (0.052) | (0.050)     | (0.035)     | (0.060)           | (0.039) |  |
| Mean of dependent variable            | 0.27               |         | 0.21        |             | 0.23              |         |  |
| Chi-squared (1) statistic             | 17.9               | 27.8    | 21.5        | 34.2        | 29.3              | 55.0    |  |
| Observations                          | 15,039             |         | 20,091      |             | 30,415            |         |  |
| Full controls                         | No                 | Yes     | No          | Yes         | No                | Yes     |  |

Note: Results of probit models, with marginal effects and standard errors clustered at the case manager level, are reported.

## Figure 2: local linear plot of first stage

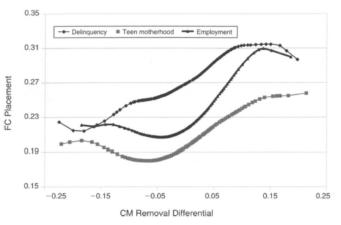



FIGURE 2. FC PLACEMENT VERSUS CASE MANAGER REMOVAL DIFFERENTIAL

Notes: Local linear regressions for the three samples. Bandwidth = 0.05.

## Table 6: Juvenile delinquency

TABLE 6-FOSTER CARE PLACEMENT AND JUVENILE DELINQUENCY

Dependent variable: Juvenile delinquency

|                           | Model:                            |                | Pr   | robit  |      | IV Probit |      |        |      |
|---------------------------|-----------------------------------|----------------|------|--------|------|-----------|------|--------|------|
|                           |                                   | Coeff.         | S.E. | Coeff. | S.E. | Coeff.    | S.E. | Coeff. | S.E. |
|                           | FC placement                      | 0.01           | 0.01 | 0.00   | 0.01 | 0.26      | 0.14 | 0.35   | 0.14 |
| Initial reporter          | Physician                         |                |      | 0.00   | 0.02 |           |      | -0.02  | 0.02 |
| (Other reporter excluded) | School                            |                |      | 0.00   | 0.02 |           |      | 0.00   | 0.02 |
|                           | Police                            |                |      | 0.02   | 0.02 |           |      | -0.01  | 0.03 |
|                           | Family                            |                |      | 0.00   | 0.02 |           |      | -0.01  | 0.02 |
|                           | Neighbor                          |                |      | 0.01   | 0.03 |           |      | 0.00   | 0.03 |
|                           | Other government                  |                |      | 0.03   | 0.02 |           |      | 0.01   | 0.02 |
|                           | Anonymous                         |                |      | 0.01   | 0.02 |           |      | 0.03   | 0.02 |
| Age at report             | Age 5                             |                |      | _      | _    |           |      | _      | _    |
| (Youngest age excluded)   | Age 6                             |                |      | 0.06   | 0.05 |           |      | 0.04   | 0.05 |
| ,                         | Age 7                             |                |      | 0.10   | 0.05 |           |      | 0.08   | 0.05 |
|                           | Age 8                             |                |      | 0.13   | 0.05 |           |      | 0.12   | 0.05 |
|                           | Age 9                             |                |      | 0.13   | 0.05 |           |      | 0.12   | 0.05 |
|                           | Age 10                            |                |      | 0.17   | 0.06 |           |      | 0.15   | 0.05 |
|                           | Age 11                            |                |      | 0.19   | 0.06 |           |      | 0.18   | 0.05 |
|                           | Age 12                            |                |      | 0.22   | 0.06 |           |      | 0.21   | 0.05 |
|                           | Age 13                            |                |      | 0.23   | 0.06 |           |      | 0.23   | 0.06 |
|                           | Age 14                            |                |      | 0.23   | 0.06 |           |      | 0.23   | 0.06 |
|                           | Age 15                            |                |      | 0.12   | 0.05 |           |      | 0.14   | 0.05 |
| Sex                       | Boy                               |                |      | 0.19   | 0.01 |           |      | 0.19   | 0.01 |
| Race/ethnicity            | White                             |                |      | -0.07  | 0.03 |           |      | -0.07  | 0.03 |
| (Other race excluded)     | African American                  |                |      | -0.02  | 0.04 |           |      | -0.05  | 0.04 |
|                           | Hispanic                          |                |      | -0.07  | 0.03 |           |      | -0.07  | 0.03 |
| Allegation                | Physical abuse                    |                |      | -0.01  | 0.02 |           |      | 0.01   | 0.02 |
| (Other neglect excluded)  | Substantial risk of harm          |                |      | -0.03  | 0.01 |           |      | -0.03  | 0.02 |
| ,,                        | Other abuse                       |                |      | -0.02  | 0.02 |           |      | 0.01   | 0.03 |
|                           | Lack of supervision               |                |      | -0.02  | 0.02 |           |      | -0.03  | 0.02 |
|                           | Environmental neglect             |                |      | -0.02  | 0.02 |           |      | 0.00   | 0.02 |
|                           | Mean of dep. var.<br>Observations | 0.17<br>15,039 |      |        |      |           |      |        |      |

Note: Marginal effects and standard errors clustered at the case manager level are reported.

#### Table 7: Teen motherhood

TABLE 7—FOSTER CARE PLACEMENT AND TEEN MOTHERHOOD

| Dependent variable                                          |                      | Teen pregna      | ncy              |                  |
|-------------------------------------------------------------|----------------------|------------------|------------------|------------------|
| Model                                                       | Probit<br>(1)        | Probit (2)       | IV Probit<br>(3) | IV Probi<br>(4)  |
| Foster care placement                                       | 0.106<br>(0.009)     | 0.090<br>(0.010) | 0.171<br>(0.158) | 0.291<br>(0.171) |
| Mean of dependent variable<br>Full controls<br>Observations | 0.35<br>No<br>20.091 | Yes              | No               | Yes              |

Note: Marginal effects and standard errors clustered at the case manager level are reported.

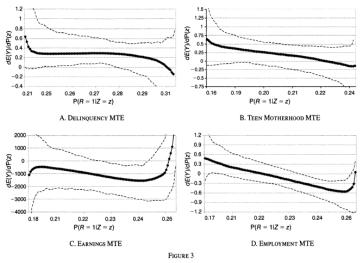

## Table 8: Employment outcomes

TABLE 8—FOSTER CARE PLACEMENT AND EMPLOYMENT & EARNINGS

| Dependent variable                                 | Fraction of quarters working in 2002 |         |         |         | Average     | e quarterly ea | rnings in 2 | 002    |
|----------------------------------------------------|--------------------------------------|---------|---------|---------|-------------|----------------|-------------|--------|
| Model                                              | OLS                                  | OLS     | 2SLS    | 2SLS    | OLS         | OLS            | 2SLS        | 2SLS   |
|                                                    | (1)                                  | (2)     | (3)     | (4)     | (5)         | (6)            | (7)         | (7)    |
| Foster care placement                              | -0.023                               | 0.002   | -0.110  | -0.154  | -82.8       | -50.4          | -851        | -1,296 |
|                                                    | (0.006)                              | (0.006) | (0.120) | (0.113) | (29.5)      | (30.6)         | (597)       | (626)  |
| Mean of dep. var.<br>Full controls<br>Observations | 0.320<br>No<br>30,415                | Yes     | No      | Yes     | 1,044<br>No | Yes            | No          | Yes    |

Notes: Standard errors clustered at the case manager level are reported. Average quarterly earnings include those with zero earnings.

### Figure 3: Marginal treatment effects



Notes: Figures report the results of a local quadratic estimator evaluated at each percentile of P(z). Confidence intervals of 5 to 95 percent reported, calculated using a bootstrap with 250 replications, clustered at the case manager level. Bandwidth = 0.037.

## Take-aways

Important, thoughtful, and well-written paper

- Important set of institutions, but under-studied
- Novel data collection of meaningful outcome variables
- Nice econometrics blended with qualitative background
- Imprecise estimates, but still a high-impact paper

- Preliminaries
- Prenatal environments
- Early childhood environments
- Policy responses
- Wrap-up

# Wrap-up

Thanks for a great class :)

MIT OpenCourseWare http://ocw.mit.edu

### 14.662 Labor Economics II

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.