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The goals of this chapter are: 

•	 to introduce derivative control; and 

•	 to study the combination of proportional and derivative control 
for taming systems with integration or inertia. 

The controllers in the previous chapter had the same form: The control 
signal was a multiple of the error signal. This method cannot easily control 
an integrating system, such as the motor positioning a rod even without 
inertia. If the system has inertia, the limits of proportional control become 
even more apparent. This chapter introduces an alternative: derivative 
control. 

8.1 Why derivative control 

An alternative to proportional control is derivative control. It is motivated 
by the integration inherent in the motor system. We would like the feed
back system to make the actual position be the desired position. In other 
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words, it should copy the input signal to the output signal. We would even 
settle for a bit of delay on top of the copying. This arrangement is shown 
in the following block diagram: 

+ C(R) =?  M(R) =  
R 

1 − R 

S(R) = R−1 

controller 
motor 

sensor 

Since the motor has the functional R/(1 − R), let’s put a discrete-time de
rivative 1 − R into the controller to remove the 1 − R in the motor’s de
nominator. With this derivative control, the forward-path cascade of the 
controller and motor contains only powers of R. Although this method is 
too fragile to use alone, it is a useful idea. Pure derivative control is fragile 
because it uses pole–zero cancellation. This cancellation is mathematically 
plausible but, for the reasons explained in lecture, it produces unwanted 
offsets in the output. However, derivative control is still useful. As we 
will find, in combination with proportional control, it helps to stabilize in
tegrating systems. 

8.2 Mixing the two methods of control 

Proportional control uses β as the controller. Derivative control uses γ(1 − 
R) as the controller. The linear mixture of the two methods is 

C(R) = β + γ(1 − R). 

+ C(R) = β + γ(1 − R) M(R) =  
R 

1 − R 

S(R) = R−1 

controller 
motor 

sensor 

Let F(R) be the functional for the entire feedback system. Its numerator is 
the forward path C(R)M(R). Its denominator is 1 − L(R), where L(R) is 
the loop functional or loop gain that results from going once around the 
feedback loop. Here the loop functional is 
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L(R) = −C(R)M(R)S(R). 

Don’t forget the contribution of the inverting (gain= −1) element! So the 
overall system functional is 

(β + γ(1 − R)) 
1−
R
RF(R) =  . 

1 + (β + γ(1 − R)) 
1−
R
R R 

Clear the fractions to get 

whatever 
F(R) =  . 

1 − R + (β + γ(1 − R))R2 

The whatever indicates that we don’t care what is in the numerator. It can 
contribute only zeros, whereas what we worry about are the poles. The 
poles arise from the denominator, so to avoid doing irrelevant algebra and 
to avoid cluttering up the expressions, we do not even compute the nu
merator as long as we know that the fractions are cleared. 

The denominator is 

1 − R + (β + γ)R2 − γR3. 

This cubic polynomial produces three poles. Before studying their loca
tions – a daunting task with a cubic – do an extreme-cases check: Take the 
limit γ → 0 to turn off derivative control. The system should turn into the 
pure proportional-control system from the previous chapter. It does: The 
denominator becomes 1 − R + βR2, which is the denominator from Sec
tion 7.2. As the proportional gain β increases from 0 to ∞, the poles, which 
begin at 0 and 1, move inward; collide at 1/2 when β = 1/4; then split up
ward and downward to infinity. Here is the root locus of this limiting case 
of γ → 0, with only proportional control: 
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8.3 Optimizing the combination 

We would like to make the whole system as stable as possible, in the sense 
that the least stable pole is as close to the origin as possible. The root 
locus for the general combination has three branches, one for each pole, 
whereas the limiting case of proportional control has only two poles and 
two branches. Worse, the root locus for the general combination is gener
ated by two parameters – the gains of the proportional and the derivative 
portions – whereas in the limiting case it is generated by only one parame
ter. The general analysis seems difficult. 

Surprisingly, the extra parameter rescues us from painful mathematics. To 
see how, look at the coefficients in the cubic: 

1 − R + (β + γ)R2 − γR3. 

The factored form is 

(1−p1R)(1−p2R)(1−p3R) =  1−(p1 + p2 + p3) R+(p1p2 + p1p3 + p2p3) R
2−p1p2p3 R � �� � � �� � � �� � 

1 β+γ γ 

So the first constraint is 

p1 + p2 + p3 = 1, 

showing that the center of gravity of the poles is 1/3. That condition is 
independent of β and γ. So the most stable system has a triple pole at 1/3, 
if that arrangement is possible. To see why that arrangement is the most 
stable, imagine starting from it. Now move one pole inward along the real 
axis to increase its stability. To preserve the invariant p1 + p2 + p3 = 1, 
at least one of the other poles must move outward and become less stable. 
Thus it is best not to move any pole away from the triple cluster, so it is the 
most stable arrangement. 

Exercise 42. Where does the preceding argument require that 
the center of gravity be independent of β and γ? 

If the triple-pole arrangement is impossible, then the preceding argument, 
which assumed its existence, does not work. And we need lots of work to 
find the best arrangement of poles. 
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Fortunately, the triple pole is possible thanks to the extra parameter γ. 
Having freedom to choose β and γ, we can set the R2 coefficient β + γ 
independently from the R3 coefficient, which is −γ. So, using β and γ as 
separate dials, we can make any cubic whose poles are centered on 1/3. 

Let’s set those dials by propagating constraints. With p1 = p2 = p3 = 1/3, 
the product p1p2p3 = 1/27. So the gain of the derivative controller is 

1 
γ = . 

27 

The last constraint is that p1p2 +p1p3 +p2p3 = 3/9 = 1/3. So  β +γ = 1/3. 
With γ = 1/27, this equation requires that the gain of the proportional 
controller be β = 8/27. The best controller is then 

8 1 1 R 
C(R) =  + (1 − R) =  1 − . 

27 27 3 9 

Exercise 43. What is the pole-zero plot of the forward path 
C(R)M(R)? 

This controller has a zero at z = 1/9. So the added zero has pulled the 
poles into the sweet spot of 1/3. In comparison with pure proportional 
control, where the worst pole could not get closer than z = 1/2, derivative 
control has dragged the poles all the way to z = 1/3. A judicious amount 
of derivative control has helped stabilize the system. 

8.4 Handling inertia 

The last example showed how to use derivative control and computed how 
much to use. However, derivative control was not essential to stabilizing 
the feedback system since proportional control alone can do so and can 
drag the least stable pole to z = 1/2. But derivative control becomes essen
tial when the system has inertia. 

Without inertia, the motor accumulates angular velocity to produce angle, 
which is represented by the difference equation 

y[n] = y[n − 1] + x[n − 1] 
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and the system functional M(R) =  R/(1 − R). The model of inertia in 
Section 7.4 added a term to the motor’s difference equation: 

y[n] = y[n − 1] + x[n − 1] + m(y[n − 1] − y[n − 2]), 

inertia 

where m is a constant between 0 (no inertia) and 1 (maximum inertia). This 
term changes the motor’s system functional to 

1 
M(R) =  . 

1 − (1 + m)R + mR2 

It factors into poles at m and 1: 

1 
M(R) =  . 

(1 − mR)(1 − R) 

The analysis in Section 7.4 used m = 1/2, and 
then asked you to try m = 4/5. You should 
have found that the arm is hard to position when 
m is so close to 1. The figure shows the root 
locus for the motor with inertia m = 4/5 and 
controlled only using proportional control. The 
least stable pole can, with the right proportional 
gain, be dragged to the collision point z = 0.9. 
But the pole cannot be moved farther inward 
without moving the other pole outward. A pole 
at z = 0.9 means that the system’s response 
contains the mode 0.9n, which converges only 
slowly to zero. 

Pause to try 39. How many time steps before 0.9n has decayed 
roughly by a factor of e3 (commonly used as a mea
sure of ‘has fallen very close to zero’)? 

The decay 0.9n takes roughly 10 steps to fall by a factor of e. Use the great
est approximation in mathematics: 

0.910 = (1 − 0.1)10 ≈ e −0.1×10 = e −1. 
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So 30 time steps make the signal fall by a factor of e3. In some applications, 
this wait might be too long. 

Derivative control can pull the poles toward the origin, thereby hasten
ing the convergence. Let’s analyze how much derivative control to use by 
finding the poles of the feedback system. The feedback system is 

+ C(R) = β + γ(1 − R) M(R) =  
R 

(1 − mR)(1 − R) 

S(R) = R−1 

controller 
motor 

sensor 

Its system functional has the form 

N(R)
F(R) =  ,

D(R)

where the denominator is 

D(R) = 1 − (−C(R)M(R)S(R)) 

loop functional L(R) 

= 1 + C(R)M(R)S(R). 

In the product C(R)M(R)S(R), the only term with a denominator is M(R). 
To clear its denominator from D(R), the whole denominator will get mul
tiplied by the denominator of M(R), which is (1 − mR)(1 − R). So the 
system functional will end up with a denominator of 

(1 − mR)(1 − R) + (β + γ(1 − R)) R2. 

controller 

After the controller come two powers of R, one from the sensor, the other 
from the numerator of the motor functional M(R). After expanding the 
products, the denominator is 

1 − (1 + m)R + (m + β + γ)R2 − γR3. 

This system has three parameters: the proportional gain β, the derivative 
gain γ, and the inertia pole m. Before spending the effort to analyze a cubic 
equation for its poles, check whether the equation is even reasonable! The 
fastest check is the extreme cases of taking parameters to zero. The limit 



102 8.4 Handling inertia 

m → 0 wipes out the inertia and should reproduce the denominator in the 
preceding section. In that limit, the denominator becomes 

1 − R + (β + γ)R2 − γR3 (m → 0 limit), 

which matches the denominator in Section 8.2. Good! 

Adding the limit γ → 0 then wipes out derivative control, which should 
reproduce the analysis of the simple motor with only proportional control 
in Section 7.2. Adding the γ → 0 limit turns the denominator into 

1 − R + βR2 (m → 0, γ → 0 limit), 

which passes the test. Adding the β → 0 limit wipes out the remaining 
feedback, leaving the bare motor functional M(R), which indeed has a 
factor of 1 − R in the denominator. So the candidate denominator passes 
this third test too. 

Although passing three tests does not guarantee correctness, the tests in
crease our confidence in the algebra, perhaps enough to make it worth
while to analyze the cubic to find where and how to place the poles. For 
convenience, here is the cubic again: 

1 − (1 + m)R + (m + β + γ)R2 − γR3. 

We would like to choose β and γ so that the worst pole – the one farthest 
from the origin – is as close as possible to the origin. 

Maybe we can try the same trick (method?) that we used in the analysis 
without inertia: to place all three poles at the same spot. Let’s assume that 
this solution is possible, and propagate constraints again. The sum of the 
poles is 1 + m, so each pole is at p = (1 + m)/3. The product of the poles, 
p3, is  (1 + m)3/27, which tells us 

(1 + m)3 

γ = . 
27 

. The sum of pairwise products of poles is 3p2 and is therefore m + β + γ. 
Since 3p2 is (1 + m)2/3, the equation for β is 

(1 + m)2 

= m + β + γ. 
3 

So the proportional gain is: 
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   (1 + m)2 m2 − m + 1 (1 + m)3

β = − m − γ = − . 
3 3 27 

To summarize, 

(1  + m)3

γ = ,
27


m2 − m + 1  
(1 + m)3

β = − . 
3 27 

An interesting special case is maximum inertia, which is m = 1. Then 
γ = 8/27 and β = 1/27, so the controller is 

1 8 1 8 
+ (1 − R) =  − R 

27 27 3  27  
1
�

8 
= 1 − R 

�
. 

3 9 

So the controller contains a zero at 8/9, near the double pole at 1. This 
mixed proportional–derivative controller moves all the poles to z = (1 + 
m)/3 = 2/3, which is decently inside the unit circle. So this mixed con
troller can stabilize even this hard case. This case is the hardest one to 
control because the motor-and-rod system now contains two integrations: 
one because the motor turns voltage into angular velocity rather than po
sition, and the second because of the inertia pole at 1. This system has the 
same loop functional as the steering-a-car example in lecture (!), which was 
unstable for any amount of pure proportional gain. By mixing in deriva
tive control, all the poles can be placed at 2/3, which means that the system 
is stable and settles reasonably quickly. Since � �2.5

2 ≈ e− 1,
3 

the time constant for settling is about 2.5 time steps, and the system is well 
settled after three time constants, or about 7 time steps. 

8.5 Summary 

To control an integrating system, try derivative control. To control a sys
tem with inertia, also try derivative control. In either situation, do not use 
pure derivative control, for it is too fragile. Instead, mix proportional and 
derivative control to maximize the stability, which often means putting all 
the poles on top of each other. 
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