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Memory hierarchy

Problem 1. The following is a sequence of address references given as word addresses: 

2,3,11,16,21,13,64,48,19,11,3,22,4,27,6,11

A.   Show the hits and misses and final cache contents for a fully associative cache with one-word 
blocks and a total size of 16 words. Assume LRU replacement. 

2: miss, cache now holds: 2 
3: miss, cache now holds: 3, 2 
11: miss, cache now holds: 11, 3, 2 
16: miss, cache now holds: 16, 11, 3, 2 
21: miss, cache now holds: 21, 16, 11, 3, 2 
13: miss, cache now holds: 13, 21, 16, 11, 3, 2 
64: miss, cache now holds: 64, 13, 21, 16, 11, 3, 2 
48: miss, cache now holds: 48, 64, 13, 21, 16, 11, 3, 2 
19: miss, cache now holds: 19, 48, 64, 13, 21, 16, 11, 3, 2 
11: hit, cache now holds: 11, 19, 48, 64, 13, 21, 16, 3, 2 
3: hit, cache now holds: 3, 11, 19, 48, 64, 13, 21, 16, 2 
22: miss, cache now holds: 22, 3, 11, 19, 48, 64, 13, 21, 16, 2 
4: miss, cache now holds: 4, 22, 3, 11, 19, 48, 64, 13, 21, 16, 2 
27: miss, cache now holds: 27, 4, 22, 3, 11, 19, 48, 64, 13, 21, 16, 2 
6: miss, cache now holds: 6, 27, 4, 22, 3, 11, 19, 48, 64, 13, 21, 16, 2 
11: hit, cache now holds: 11, 6, 27, 4, 22, 3, 19, 48, 64, 13, 21, 16, 2 

B.   Show the hits and misses and final cache contents for a fully associative cache with four-word 
blocks and a total size of 16 words. Assume LRU replacement. 

With a N-word block of data for each cache entry, note that the N words in a cache entry will 
have consecutive memory addresses starting with a word address that's a multiple of N. 

2: miss, cache now holds: 0-3 
3: hit, cache now holds: 0-3 
11: miss, cache now holds: 8-11, 0-3 
16: miss, cache now holds: 16-19, 8-11, 0-3 
21: miss, cache now holds: 20-23, 16-19, 8-11, 0-3 
13: miss, cache now holds: 12-15, 20-23, 16-19, 8-11 



64: miss, cache now holds: 64-67, 12-15, 20-23, 16-19 
48: miss, cache now holds: 48-51, 64-67, 12-15, 20-23 
19: miss, cache now holds: 16-19, 48-51, 64-67, 12-15 
11: miss, cache now holds: 8-11, 16-19, 48-51, 64-67 
3: miss, cache now holds: 0-3, 8-11, 16-19, 48-51 
22: miss, cache now holds: 20-23, 0-3, 8-11, 16-19 
4: miss, cache now holds: 4-7, 20-23, 0-3, 8-11 
27: miss, cache now holds: 24-27, 4-7, 20-23, 0-3 
6: hit, cache now holds: 4-7, 24-27, 20-23, 0-3 
11: miss, cache now holds: 8-11, 4-7, 24-27, 20-23 

Problem 2. Cache multiple choice: 

A.   If a cache access requires one clock cycle and handling cache misses stalls the processor for 
an additional five cycles, which of the following cache hit rates comes closest to achieving an 
average memory access of 2 cycles? 
 
(A) 75% 
(B) 80% 
(C) 83% 
(D) 86% 
(E) 98% 

2 cycle average access = (1 cycle for cache) + (1 - hit rate)(5 cycles stall) 
=> hit rate = 80% 

B.   LRU is an effective cache replacement strategy primarily because programs 
 
(A) exhibit locality of reference 
(B) usually have small working sets 
(C) read data much more frequently than write data 

(A). Locality implies that the probability of accessing a location decreases as the time since the 
last access increases. By choosing to replace locations that haven't been used for the longest time, 
the least-recently-used replacement strategy should, in theory, be replacing locations that have 
the lowest probability of being accessed in the future. 

C.   If increasing the block size of a cache improves performance it is primarily because programs 
 
(A) exhibit locality of reference 



(B) usually have small working sets 
(C) read data much more frequently than write data 

(A). Increased block size means that more words are fetched when filling a cache line after a miss 
on a particular location. If this leads to increased performance, then the nearby words in the block 
must have been accessed by the program later on, ie, the program is exhibiting locality. 

D.   Consider the following program: 

integer A[1000];
for i = 1 to 1000
  for j = 1 to 1000
    A[i] = A[i] + 1

When the above program is compiled with all compiler optimizations turned off and run on a 
processor with a 1K byte fully-associative write-back data cache with 4-word cache blocks, what 
is the approximate data cache miss rate? (Assume integers are one word long and a word is 4 
bytes.) 
 
(A) 0.0125% 
(B) 0.05% 
(C) 0.1% 
(D) 5% 
(E) 12.5% 

(A). Considering only the data accesses, the program performs 1,000,000 reads and 1,000,000 
writes. Since the cache has 4-word blocks, each miss brings 4 words of the array into the cache. 
So accesses to the next 3 array locations won't cause a miss. Since the cache is write-back, writes 
happen directly into the cache without causing any memory accesses until the word is replaced. 
So altogether there are 250 misses (caused by a read of A[0], A[4], A[8], ...), for a miss rate of 
250/2,000,000 = 0.0125% 

E.   In a non-pipelined single-cycle-per-instruction processor with an instruction cache, the 
average instruction cache miss rate is 5%. It takes 8 clock cycles to fetch a cache line from the 
main memory. Disregarding data cache misses, what is the approximate average CPI (cycles per 
instruction)? 
 
(A) 0.45 
(B) 0.714 
(C) 1.4 
(D) 1.8 
(E) 2.22 



(C). CPI = (1 inst-per-cycle) + (0.05)(8 cycles/miss) = 1.4 

Problem 3. A student has miswired the address lines going to the memory of an unpipelined BETA. The 
wires in question carry a 30-bit word address to the memory subsystem, and the hapless student has in 
fact reversed the order of all 30 address bits. Much to his surprise, the machine continues to work 
perfectly. 

A.  Explain why the miswiring doesn't affect the operation of the machine. 

Since the Beta reverses the order of the 30 bit address in the same manner for each memory 
access, the Beta will use the same reversed address to access a particular memory location for 
both stores and loads. Thus, the operation of the machine will not be affected. 

B.  The student now replaces the memory in his miswired BETA with a supposedly higher 
performance unit that contains both a fast fully associative cache and the same memory as before. 
The reversed wiring still exists between the BETA and this new unit. To his surprise, the new 
unit does not significantly improve the performance of his machine. In desperation, the student 
then fixes the reversal of his address lines and the machine's performance improves 
tremendously. Explain why this happens. 

Caches take advantage of locality of reference by reading in an entire block of related data at one 
time, thereby reducing main memory accesses. By reversing the order of the 30 bit address, 
locality of the memory addresses is disrupted. The low-order bits that would normally place 
related data close to one another are instead the high-order bits and related data is more spread 
out through the main memory. This reduction in locality reduces cache performance significantly. 
When the student fixes the address line reversal problem, locality of the memory is restored, and 
the cache can perform as intended. 

Problem 4. For this problem, assume that you have a processor with a cache connected to main memory 
via a bus. A successful cache access by the processor (a hit) takes 1 cycle. After an unsuccessful cache 
access (a miss), an entire cache block must be fetched from main memory over the bus. The fetch is not 
initiated until the cycle following the miss. A bus transaction consists of one cycle to send the address to 
memory, four cycles of idle time for main-memory access, and then one cycle to transfer each word in 
the block from main memory to the cache. Assume that the processor continues execution only after the 
last word of the block has arrived. In other words, if the block size is B words (at 32 bits/word), a cache 
miss will cost 1 + 1 + 4 + B cycles. The following table gives the average cache miss rates of a 1 Mbyte 
cache for various block sizes: 



 

A.   Write an expression for the average memory access time for a 1-Mbyte cache and a B-word 
block size (in terms of the miss ratio m and B). 

Average access time = (1-m)(1 cycle) + (m)(6 + B cycles) = 1 + (m)(5+B) cycles 

B.   What block size yields the best average memory access time? 

 

C.  If bus contention adds three cycles to the main-memory access time, which block size yields the 
best average memory access time? 

 

D.  If bus width is quadrupled to 128 bits, reducing the time spent in the transfer portion of a bus 



transaction to 25% of its previous value, what is the optimal block size? Assume that a minimum 
one transfer cycle is needed and don't include the contention cycles introduced in part (C). 

 

Problem 5. You are designing a controller for a tiny cache that is fully associative but has only three 
words in it. The cache has an LRU replacement policy. A reference record module (RRM) monitors 
references to the cache and always outputs the binary value 1, 2, or 3 on two output signals to indicate 
the least recently used cache entry. The RRM has two signal inputs, which can encode the number 0 
(meaning no cache reference is occurring) or 1, 2, or 3 (indicating a reference to the corresponding word 
in the cache). 

 

A.  What hit ratio will this cache achieve if faced with a repeating string of references to the 
following addresses: 100, 200, 104, 204, 200? 

Here's what happens: 

access 100: miss; cache contains 100, ---, ---
access 200: miss; cache contains 200, 100, ---
access 104: miss; cache contains 104, 200, 100
access 204: miss; cache contains 204, 104, 200
access 200: hit;  cache contains 200, 204, 104
access 100: miss; cache contains 100, 200, 204
access 200: hit;  cache contains 200, 100, 204
access 104: miss; cache contains 104, 200, 100
access 204: miss; cache contains 204, 104, 200



access 200: hit;  cache contains 200, 204, 104
...

So in the steady state, location 200 stays in the cache and all other locations get replaced. So the 
hit rate is 2/5 or 40%. 

B.  The RRM can be implemented as a finite-state machine. How many states does the RRM need to 
have? Why? 

There are 3! = 6 ways to list the three locations in order of use. Thus RRM needs 6 states, one 
state for each possible order. 

C.  How many state bits does the RRM need to have? 

We can encode six states using 3 state bits. 

D.  Draw a state-transition diagram for the RRM. 



 

E.  Consider building an RRM for a 15-word fully associative cache. Write a mathematical 
expression for the number of bits in the ROM required in a ROM-and-register implementation of 
this RRM. (You need not calculate the numerical answer.) 

There are 15! possible states, so we would need ceiling(log2(15!)) = 41 state bits. Including the 
four input bits that indicate which word is being accessed, the ROM would have 245 locations of 
41 bits each, for a total of approximately 1442 trillion bits. 

F.  Is it feasible to build the 15-word RRM above using a ROM and register in today's technology? 
Explain why or why not. 

1442 trillion bits is a bit much even for today's technology. In a .09u technology, a single 
transistor pulldown in a ROM might require (.09u x .2u) = .02u2, so our ROM would require 



about 29 square meters of silicon! 


