
6.005 Software Construction
Fall 2011
Prof. Rob Miller

A Guide to Snapshot Diagrams

Purpose

Snapshot diagrams represent the internal state of a program at runtime – its stack (methods in
progress and their local variables) and its heap (objects that currently exist).

Here’s why we use snapshot diagrams in 6.005:

 To talk to each other through pictures (in lecture, recitation, and team meetings)

 To illustrate concepts like primitive types vs. object types, immutable values vs. immutable
references, pointer aliasing, stack vs. heap, abstractions vs. concrete representations.

 To help explain your design for your team project (to each other and to your TA)

 To pave the way for richer design notations in subsequent courses. Snapshot diagrams
generalize into object models in 6.170.

Although the diagrams below use examples from Java, the notation can be applied to most object-
oriented programming languages, e.g. Python, Javascript, C++, Ruby.

Primitive values

Primitive values are represented by bare constants. (The incoming arrow is a reference from a
variable or an object field.)

3 5.0 „c‟ null

Object values

An object value is a circle labeled by its type. When we want to show more detail, we write field
names inside it, with arrows pointing out to their values. For still more detail, the fields can include
their declared types. Some people prefer to write x:int instead of int x; both are fine.

Point
Point

x

y

5

-3

Point

int x

int y

5

-3

These lecture notes have been collaboratively authored, with contributions from Saman Amarasinghe, Srini Devadas, Michael Ernst, John
Guttag, Daniel Jackson, Rob Miller, Martin Rinard, and Armando Solar-Lezama. Copyright held by the authors.

1

Immutability

Immutable references (called final in Java) are denoted by a crossbar just behind the arrowhead.
Here’s an object whose id never changes (it can’t be reassigned to a different number), but whose age
can change.

Person

id

age

9208484

19

Immutable objects (intended by their designer to always represent the same value) are denoted by a
double border. For example, here’s an Integer object, an object value that represents the “boxed”
form of an int:

Integer

7

Note that we also omitted the field name here, because it isn’t necessary to understand the picture.

Stack frames

A stack frame is a method in progress. It is labeled by the method name (including its class name or
parameter types if necessary to be clear), and contains references for parameters and local variables.
Examples:

Point.add() factorial()

n 1

factorial()

n 2

factorial()

n 3

this Point

dx

dy

The left example shows Java’s this reference, which refers to the object on which the method was
called. The right example shows that stacks are drawn upwards: when a method calls another
method, the new stack frame is drawn on top. This factorial function recursively calls itself with
steadily decreasing values for the parameter n.

Arrays and Lists

Like other object values, arrays and lists are labeled with their type. In lieu of field names, we label
the outgoing edges with indexes (0, 1, ...). When the sequence of elements is obvious, we may omit
the index labels.

2

Strings

Here are several ways to write strings that emphasize different things. The leftmost treats a string as
a primitive, which we’ll often do simply because strings are immutable and frequent, so it’s
convenient. The middle picture treats a string as an object value, but shows its abstract value. The
right picture regards a string as a sequence of characters.

String

chars len

3 char[20]

„a‟ „b‟ „c‟ 0

. . .

0

String

“abc”

String “abc”
0 1 2

„a‟ „b‟ „c‟

Finally, when we’re talking about the concrete internal representation of a string in Java, we might
draw a picture like this, which shows the string’s character array:

int[20]

. . .
5

8 17 -9

0 1 2 19

ArrayList<String>

“abc” “def” “xyz”

. . .

0 1 2

3

Maps

A map value maps one type (the keys) into another type (the values). We’ve already seen examples of
these: arrays, strings and lists are maps with integer keys, which we often omitted writing on the
edges because they could be inferred from the order of the edges.

For maps with other types of keys, we will label the edges with the abstract values of the keys. Here
are two examples:

HashMap

<String,

Integer>

. . .

20
“abc

”
“def”

“xyz”

9

3

HashMap

<Person,

String>

. . .

“Ben”

“Alyssa”

Person

Person

This example uses some abbreviation: strings and integers are drawn as their abstract primitive
values, even though Java internally represents them as object values.

4

MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

