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L5: Regular Expressions & Grammars 

Today 

o Lexing and parsing 
o Grammars 
o Regular expressions 

Required reading (from the Java Tutorial) 

 Enums 

 Regular Expressions 

Markup 

For today’s working examples, we’ll be using several different markup languages, which represent 
typographic style in plain text.  Here they are: 

HTML 

Here is an <i>italic</i> word. 

 

Markdown 

This is _italic_. 

 

LaTeX 

In LaTeX, {\em italics are used to show {\em emphasis}, unless you’re 

nesting emphasized text inside other emphasized text}. 

State machine review 

Let’s start by drawing state machines representing the behavior of a renderer for these markup 
languages.  All three have two states: 

 Normal  Italic 

What differs are the transitions between them. 

The state machines alone are dissatisfying – they don’t tell the whole story about the language.  In 
particular, they don’t show the structure of the language, particularly of LaTeX. 

Reading Input 

We’re going to build some classes that read and interpret these markup languages. 

The first thing we need to do is decide on the set of events we want our state machine to use.  Strings 
and streams give us very fine-grained events, like characters, but the kinds of input we want to 
process usually have bigger symbols than that.  So it will be useful to divide input into two steps: 

______________ 
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 lexical analysis, or lexing, which transforms the stream of characters into a stream of higher-
level symbols, like words, or HTML tags, or whole chunks of text.  These symbols are 
usually called lexemes or tokens. 

 parsing, which takes the stream of tokens and interprets them.  The parser is responsible for 
knowing the relationships between them (e.g., checking that <i> precedes </i>). 

In typical practice, these two steps are designed as independent state machines, a lexer and a parser, 
that interact through a clean interface: the output events of the lexer are consumed by the parser.  
This is an instance of a general software design principle called separation of concerns: the lexer worries 
about lexing (e.g., what an individual HTML tag like “<i>” should look like), and the parser worries 
about parsing (e.g. that “<i>” should precede “</i>”).  Although they are closely coupled in the 
sense that you can’t use the parser without the lexer, they still have a clear contract between them. 

Lexical Analysis 

Lexical analysis takes a stream of fine-grained, low-level symbols (e.g., characters) and aggregates 
them into a sequence of higher-level symbols (e.g. words), called lexemes.  The process is also called 
tokenization, and its output symbols are tokens. 

Tokenization makes the second stage of input handling (parsing) simpler, by abstracting out some of 
the details of the input.  For example, a lexer for Java throws away information that the compiler 
doesn’t care about, like whitespace and comments. 

/** square a number */ 

int square (int x) { 

   return x*x; 

} 

might produce a token sequence like: 

int   square   (    int    x   )    {    return   x   *    x   ;    }  

It  can also combine symbols into classes that are useful to the parser.  For Java, for example, user-
defined names are typically grouped into a single kind of token, identifier or id for short, that also 
carries along information about the particular name: 

 int   Id(“square”)   (    int    Id(“x”)   )    {    return   Id(“x”)   *    Id(“x”)   ;    } 

So tokens are not just strings, but might be objects with fields.  In Java, an enum class is a useful way 
to define tokens. 

Different languages call for different kinds of tokenization.  In Python, for example, you wouldn’t 
throw away all whitespace entirely; you’d have tokens for newlines and tokens for indentation, since 
those affect Python statement structure.  In natural language processing (like English), a tokenizer 
might detect parts of speech (nouns, adjectives) and undo morphology (e.g. “mice” becomes 
“mouse+plural”). 

For our markup languages, we certainly want tokens for the italic syntax (_  , <i>, {\em, etc.).  We 
might also considering throwing away whitespace, but let’s not; whitespace is actually significant in 
these formats (Latex and markdown pay attention to blank lines, for example).  So instead we’ll just 
treat all other text as a single kind of token called text, like this: 

HTML 

This is an <i>italic</i> word. 

 

Text(“This is an “)   <i>   Text(“italic”)   </i>  Text(“ word.”) 

  

Markdown 
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Words are _italic_. 

 

Text(“Words are “)    _     Text(“italic”)    _   Text(“.”) 

 

LaTeX 

You can {\em nest {\em italics} in Latex} 

 

Text(“You can “)     {\em   Text(“ nest “)  {\em  Text(“italics”)  }  

Text(“ in Latex”)   }  

Lexer 

A lexer is a state machine that does lexing.  Like an iterator, a lexer typically has one method next() 
that returns the next token in the sequence.  Inside the lexer is a state machine that processes the 
characters of the input stream in order to generate the token sequence. 

You also have to make a design decision about how the lexer signals the end of the sequence.  One 
option is the approach taken by Iterator: a method hasNext() that indicates whether another token is 
available.  Another option is a special END token; InputStreams use this technique when read() 
returns -1.  Another option is throwing an exception from next().  Some of these alternatives are 
discussed in the lecture on Specifications. 

Grammar 

‣ a grammar defines a set of sentences  

‣ a sentence is a sequence of symbols (tokens, also called terminals) 

 

‣ a grammar is a set of productions 

‣ each production defines a non-terminal 

‣ a non-terminal is a variable that stands for a set of sentences 

 

By convention, nonterminals are capitalized, and terminals are lowercase.  

 

production has form 

‣  non-terminal ::= expression of terminals and non-terminals and operators  

 

The three operators are: 

‣  sequence: A ::= B C     an A is a B followed by a C  

‣  iteration:  A ::= B*      an A is zero or more B’s  

‣  choice:   A ::= B | C     an A is a B or a C  
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You can also use additional operators which are just syntactic sugar (equivalent to combinations of 
the big three operators): 
‣  option:   A ::=  B?       an A is a B or is empty 

   grouping:  A ::=  (B C)*   parentheses for grouping       an A is zero or more B-C pairs 

‣  1+iteration:  A ::= B+   is equivalent to  A ::= BB*      an A is one or more B’s 

   character classes:   A::= [abc]    is equivalent to    A ::= a | b | c  

       A::= [^b]    is equivalent to    A ::= a | c | d | e | f | ...  (all other characters) 

 

example:  

grammar 

URL ::= Protocol :// Address  

Address ::= Domain . TLD  

Protocol ::= http | ftp  

Domain ::= mit | apple | pbs  

TLD ::= com | edu | org 

terminals are 

://, ., http, ftp, mit, apple, pbs, com, edu, org  

non-terminals are 

TLD = { com, edu, org }  

Domain = { mit, apple, pbs }  

Protocol = { http, ftp }  

Address = { mit.com, mit.edu, mit.org, apple.com, apple.edu, apple.org, pbs.com, pbs.edu, 
pbs.org} 

URL = { http://mit.com, http://mit.edu, ..., ftp://mit.com, ...} 

 

Here’s the grammar for our simplified version of markdown: 

 Markdown ::=  ( Normal | Italic ) * 

 Italic ::= _ Text _ 

 Normal ::= Text 

 Text ::= [^ _ ]* 

 

Here’s the grammar for our simplified version of HTML, which allows italic regions to be nested 
inside other italic regions: 

 Html ::=  ( Normal | Italic ) * 

 Italic ::= <i> Html </i> 

 Normal ::= Text 
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 Text ::= [^ _ ]* 

And here is our Latex grammar: 

 Latex ::=  ( Normal | Italic ) * 

 Italic ::= {\em Latex } 

 Normal ::= Text 

 Text ::= [^ _ ]* 

Regular Grammars 

A regular grammar has a special property: by substituting every nonterminal (except the root one) with 
its righthand side, you can reduce it down to a single production for the root, with only terminals and 
operators on the right-hand side.  This “compiled” form of a regular grammar is called a regular 
expression. 

The markdown grammar is regular. By replacing nonterminals with their productions, it can be 
reduced to a single nonrecursive production: 

 Markdown ::= ([^ _ ]* | _ [^ _ ]* _ )* 

The expression on the righthand side, consisting only of terminals and operators, is called a regular 
expression.  It’s far less readable than the grammar, but it’s fast to implement, and there are many 
libraries in many programming languages that support regular expressions (called regexes for short).  
More on this later in the lecture. 

A grammar that can’t be reduced to a single nonrecursive production is called context-free. Both the 
HTML and Latex grammars are context-free.  The grammars for most programming languages are 
also context-free.  In general, any language with nested structure (like nesting parentheses or braces) 
is context-free.  Here’s part of the grammar for Java statements: 

Statement::= Block 

| if ParExpression Statement [else Statement] 

| for ( ForInit? ; Expression? ; ForUpdate? ) Statement 

| while ( Expression ) Statement 

| do Statement while ( Expression ) ; 

| try Block ( Catches | Catches? finally Block ) 

| switch ( Expression ) { SwitchBlockStatementGroups } 

| synchronized ParExpression Block 

| return Expression? ; 

| throw Expression ;  

| break Identifier? ; 

| continue Identifier? ; 

| ExpressionStatement  

| Identifier : Statement 

| ; 
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Grammars and State Machines 

regular grammars vs state machines 

‣ a state machine’s trace set is prefix closed: if t^e is a trace, so is t ‣ regular grammars can express 
trace sets that are not prefix closed 

traces of (up down)* include <up, down> but not <up>  

‣ so grammars are more expressive 

but can add “final” states to state diagrams 

‣ then define (full) traces as those that go from initial to final states  

‣ now regular grammars and machines are equally expressive  

‣ they both define regular languages 

in practice 

‣ use state machines for non-terminating systems 

‣ use grammars for terminating and non-terminating systems 

Recursive descent parsing and evaluation 

The grammar guides the design of your parser class.  The code below shows an example of a 
recursive-descent parser for the markdown grammar. 

/** 

 * A Gallileo object is a parser/evaluator for markdown that scrambles 

 * italic text (generates a random anagram of each italic part) so that Kepler 

can't read it. 

 */ 

public class Gallileo { 

     

    private final MarkdownLexer lex; 

     

    public Gallileo(String markdown) { 

        this.lex = new MarkdownLexer(markdown); 

    } 

     

    /** 

     * Evaluate the input text, scrambling italic sections. 

     * Can be called only once on a given object. 

     * Modifies this object, consuming all the text. 

     * @return string of text with markdown formatting removed 

     * and italic sections replaced by a random anagram. 

     * For example, new Gallileo("The killer was _Mrs. White_").eval() 

     * ==> "The killer was hrW.sM tie" 

     */ 

    public String eval() { 

        return evalMarkdown(); 

    } 

     

    // Grammar: 

    //   Markdown ::= (Normal | Italic)* 

    //   Normal ::= Text 

    //   Italic ::= _ Text? _ 
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    // 

    //  (Text and _ are tokens generated by MarkdownLexer) 

     

    /** 

     * Evaluates the Markdown production of the grammar. 

     * Modifies lex by consuming all the remaining tokens. 

     * @return evaluated string 

     */ 

    private String evalMarkdown() { 

        StringBuilder sb = new StringBuilder(); 

         

        for (Token tok = lex.next(); tok.getType() != Type.EOF; tok = 

lex.next()) { 

            switch (tok.getType()) { 

            case UNDERLINE: 

                sb.append(evalItalic(tok)); 

                break;     

            case TEXT: 

                sb.append(evalNormal(tok)); 

                break; 

            default: 

                throw new AssertionError("unexpected token: " + tok.getType()); 

            } 

        } 

         

        return sb.toString(); 

    } 

     

    /** 

     * Evaluates the Normal production of the grammar. 

     * Modifies lex by consuming an entire production, including the last token 

of the production. 

     * @param tok Token that started this production (required to be TEXT) 

     * @return evaluated string 

     */ 

    private String evalNormal(Token tok) { 

        // normal text isn't changed by this process, just return it as-is 

        return tok.getValue(); 

    } 

 

    /** 

     * Evaluates the Italic production of the grammar. 

     * Modifies lex by consuming an entire Italic production, including its 

final token. 

     * @param tok Token that started this production (required to be UNDERLINE) 

     * @return evaluated string 

     */ 

    private String evalItalic(Token tok) { 

        StringBuilder sb = new StringBuilder(); 

         

        // the passed in tok is UNDERLINE; skip it and advance to the next 

         

        // note that this code actually evaluates _ TEXT* _, not just _ TEXT? _ 

        for (tok = lex.next(); tok.getType() != Type.EOF && tok.getType() != 

Type.UNDERLINE; tok = lex.next()) { 

            if (tok.getType() == Type.TEXT) { 

                // collect and shuffle the text 

                sb.append(shuffle(tok.getValue())); 

            } else { 

                throw new AssertionError("unexpected token: " + tok.getType());                 

            } 

        } 
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        return sb.toString(); 

    } 

     

    /** 

     * Make a random anagram of a string. 

     * @param s string to rearrange 

     * @return a random permutation of the characters in s. 

     * For example, shuffle("abc") might return "bca" or "cba" or "abc". 

     */ 

    static String shuffle(String s) { 

        // this is not the best way to implement this -- what would be better? 

 

        // split with empty-string separator to get each char as a string 

        String[] a = s.split(""); // e.g. "", "a", "b", "c"    (produces an 

extra empty string, but that won't hurt) 

 

        List<String> l = Arrays.asList(a); 

        Collections.shuffle(l);   // now it's shuffled, e.g. "a", "", "c", "b" 

         

        // glue the shuffled list back together into one string 

        StringBuilder sb = new StringBuilder(); 

        for (String t : l) { 

            sb.append(t); 

        } 

         

        return sb.toString(); 

    } 

     

     

    /** 

     * Main method. 

     */ 

    public static void main(String[] args) { 

        Gallileo g = new Gallileo("I've discovered that _Saturn has ears_.  

Suck it, Kepler!"); 

        String message = g.eval(); 

        System.out.println(message); 

    } 

} 

 

Parser generators 

For some grammars, particularly more complex context-free grammars, you need heavier machinery.  
Parser generators are a good tool that you should make part of your toolbox.  A parser generator takes a 
grammar as input and automatically generates parser code for that grammar – typically both a lexer 
and a parser.  JavaCC is a mature and widely-used parser generator for Java. 

Using regular expressions 

Regular expressions (“regexes”) are even more widely used in programming tools than parser 
generators, and you should have them in your toolbox too. 

In Java, you can use regexes for manipulating strings (see String.split, String.match, 
java.util.regex.Pattern).  They’re built-in as a first-class feature of modern scripting languages like 
Perl, Python, Ruby, and Javascript, and you can use them in many text editors for find and replace.  
Regular expressions are your friend!  Most of the time.  Here are some examples: 

 replace all runs of whitespace with a single space, strip leading and trailing spaces: 
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string.replace(“\s+”, “ “).replace(“^\s+”, “”).replace(“\s+$”, “”); 

  

 extract part of an HTML tag 

 Matcher m = Pattern.compile(“<a href=’([^’]*)’>”).matcher(string); 

 if (m.matches()) { 

  m.group(1) is the desired URL 

 } 

 

Risks of regular expressions 

safe from bugs? 

easy to understand? 

ready for change? 
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