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L10: Concurrency 

Today 

o Processes & threads 
o Time slicing 
o Message passing & shared memory 
o Race conditions 
o Deadlocks 

 

Concurrency 

 Concurrency is everywhere, whether we like it or not 

 Multiple computers in a network 

 Multiple ap

 Multiple processors in a computer (today, often multiple processor cores on a 
single chip) 

 

 Concurrency is essential in modern programming 

• Web sites must handle multiple simultaneous users 

• Mobile apps need to do some of their processing on servers (“in the 
cloud”) 

• Graphical user interfaces often require background work (e.g. Eclipse 
compiling your Java code while you’re editing it) 

• Processor clock speeds are no longer increasing – instead we’re getting 
more cores on each new generation of chips.  So in the future, we’ll have to 
split up a computation into concurrent pieces in order to get it to run faster. 

Two Models for Concurrent Programming 

 Shared Memory 
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plications running on one computer 



 Analogy: two processors in a computer, sharing the same physical memory 

 

 Other ways to think about this:  

A and B might be two threads in a Java program (we’ll explain what a thread is later) 

A and B might be two programs running on a computer, sharing a common 
filesystem 

 Message Passing 

 Analogy: two computers in a network, communicating by network connections 

 

A and B might be a web browser and a web server – A opens a connection to B, asks for a web page, 
and B sends the web page data back to A. 

A and B might be an IM client and server. 

A and B might be two programs running on the same computer whose input and output have been 
connected by a pipe (like ls| grep ). 

Threads & Processes 

 Process 

 A process is an instance of a running program that is isolated from other processes 
on the same machine (particularly for resources like memory) 

 Tries to make the program feel like it has the whole machine to itself – like a fresh 
computer has been created, with fresh memory 

 By default, processes have no shared memory (needs special effort) 

 Automatically ready for message passing (standard input & output streams) 

 Thread 

 A thread is a locus of control inside a running program (i.e. position in the code + 
stack, representing the current point in the computation) 

 Simulates making a fresh processor inside the computer, running the same 
program and sharing the same memory as other threads in process 

 Automatically ready for shared memory, because threads share all the memory in the 
process (needs special effort to get “thread-local” memory that’s private to the 
thread) 

 Must set up message passing explicitly (e.g. by creating queues)  
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Time-slicing 

 How can I have many concurrent threads with only one or two processors in my 
computer? 

 When there are more threads than processors, concurrency is simulated by time 
slicing (processor switches between threads) 

 Time slicing happens unpredictably and nondeterministically 

 

 

A Shared Memory Example 

 Four customers using cash machines simultaneously 

 Shared memory model – each cash machine reads and writes the account balance 
directly 

 

    // all the cash machines share a single bank account 

    private static int balance = 0; 

 

 

    private static void deposit() { 

        balance = balance + 1; 

    } 

    private static void withdraw() { 

        balance = balance - 1; 

    } 

 

    // each ATM does a bunch of transactions that 

    // modify balance, but leave it unchanged afterward 

    private static void cashMachine() { 

        for (int i = 0; i < TRANSACTIONS_PER_MACHINE; ++i) { 
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            deposit(); // put a dollar in 

            withdraw(); // take it back out 

        } 

    } 

     

Throughout the day, each cash machine in our network is running cashMachine(), processing 
transactions.  In this simple example, every transaction is just a one dollar deposit followed by a one-
dollar withdrawal, so it should leave the balance in the account unchanged.  So at the end of the day, 
regardless of how many cash machines were running, or how many transactions we processed, we 
expect the account balance to still be 0. 

But it’s not.  If more than one cashMachine() call is running at the same time – say, on separate 
processors in the same computer – then balance may not be zero at the end of the day.  Why not? 

Here’s one thing that can happen.  Suppose two cash machines, A and B, are both working on a 
deposit at the same time.  Here’s how the deposit() step typically break down into low-level 
processor instructions: 

get balance  0 

add 1   1 

write back the result 1 

When A and B are running concurrently, these low-level instructions interleave with each other 
(some might even be simultaneous in some sense, but let’s just worry about interleaving for now): 

A get balance  0 

A add 1   1 

A write back the result 1 

B get balance  1 

B add 1   2 

B write back the result 2 

This interleaving is fine – we end up with balance 2, so both A and B successfully put in a dollar. 
But what if the interleaving looked like this: 

A get balance  0 

B get balance  0 

A add 1   1 

B add 1   1 

A write back the result 1 

B write back the result 1 

The balance is now 1 – A’s dollar was lost! A and B both read the balance at the same time, 
computed separate final balances, and then raced to store back the new balance – which failed to 
take the other’s deposit into account. 

This is an example of a race condition 

 A race condition means that the correctness of the program (the satisfaction of 
postconditions and invariants) depends on the relative timing of events in 
concurrent computations 
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• “A is in a race with B” 

  Some interleavings of events may be OK (in the sense that they are consistent with 
what a single, nonconcurrent process would produce), but other interleavings 
produce wrong answers – violating postconditions or invariants 

 

Tweaking the Code Won’t Help 

All these versions of the code exhibit the same race condition: 

    // version 1 

    private static void deposit() { 

        balance = balance + 1; 

    } 

    private static void withdraw() { 

        balance = balance - 1; 

    } 

 

    // version 2 

    private static void deposit() { 

        balance += 1; 

    } 

    private static void withdraw() { 

        balance -= 1; 

    } 

 

    // version 3 

    private static void deposit() { 

        ++balance; 

    } 

    private static void withdraw() { 

        --balance; 

    } 

 

You can’t tell just from looking at Java code how the processor is going to execute it.  You can’t tell 
what the indivisible operations – the atomic operations – will be.  It isn’t atomic just because it’s one 
line of Java.  It doesn’t touch balance only once just because the balance identifier occurs only once 
in the line.  The Java compiler, and in fact the processor itself, makes no commitments about what 
low-level operations it will generate from your code.  In fact, a typical Java compiler produces exactly 
the same code for all three of these versions! 

The key lesson is that you can’t tell by looking at an expression whether it will be safe from 
race conditions. 

Reordering 

It’s even worse than that, in fact.  The race condition on the bank account balance can be explained 
in terms of different interleavings of sequential operations on different processors.  But in fact, when 
you’re using multiple variables and multiple processors, you can’t even count on changes to those 
variables appearing in the same order. 

Here’s an example: 

    private boolean ready = false; 

    private int answer = 0; 

     

    // computeAnswer runs in one thread 
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    private void computeAnswer() { 

        answer = 42; 

        ready = true; 

    } 

     

    // useAnswer runs in a different thread 

    private void useAnswer() { 

        while (!ready) { 

            Thread.yield(); 

        } 

        System.out.println(answer); 

    } 

 

We have two methods that are being run in different threads.  computeAnswer does a long 
calculation, finally coming up with the answer 42, which it puts in the answer variable.  Then it sets 
the ready variable to true, in order to signal to the method running in the other thread, useAnswer, 
that the answer is ready for it to use.  Looking at the code, answer is set before ready is set, so once 
useAnswer sees ready as true, then it seems reasonable that it can assume that the answer will be 42, 
right?  Not so. 

The problem is that modern compilers and processors do a lot of things to make the code fast.  One 
of those things is making temporary copies of variables like answer and ready in faster storage (registers 
or caches on a processor), and working with them temporarily before eventually storing them back to 
their official location in memory.  The storeback may occur in a different order than the variables were 
manipulated in your code.  Here’s what might be going on under the covers (but expressed in Java 
syntax to make it clear).  The processor is effectively creating two temporary variables, tmpr and 
tmpa, to manipulate the fields ready and answer: 

    private void computeAnswer() { 

        boolean tmpr = ready; 

        int tmpa = answer; 

         

        tmpa = 42; 

        tmpr = true; 

         

        ready = tmpr; 

                          // <== what happens if useAnswer() interleaves here? 

                          //     ready is set, but answer isn't 

        answer = tmpa; 

    } 

 

Synchronization 

 The correctness of a concurrent program should not depend on accidents of timing 

Race conditions are nasty bugs -- may be rarely observed, hard to reproduce, hard to debug, but may 
have very serious effects. 

To avoid race conditions, concurrent modules that share memory need to synchronize with each 
other. 

 Locks are a common synchronization mechanism 

 Holding a lock means “I’m changing this; don’t touch it right now” 

 Suppose B acquires the lock first; then A must wait to read and write the balance 
until B finishes and releases the lock 
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 Ensures that A and B are synchronized, but another cash machine C would be able 
to run independently on a different account (with a different lock) 

 

 Acquiring or releasing a lock also tells the compiler and processor that you’re using 
shared memory concurrently, so that registers and caches will be flushed out to the 
shared storage (which solves the reordering problem) 

 

Deadlock 

 Suppose A and B are making simultaneous transfers 

 A transfer between accounts needs to lock both accounts, so that money can’t 
disappear from the system 

 A and B each acquire the lock on the “from” account 

 Now each must wait for the other to give up the lock on the “to” account 

 Stalemate! A and B are frozen, 
and the accounts are locked up. 

 “Deadly embrace” 

 Deadlock occurs when concurrent  
modules are stuck waiting for each  
other to do something 

 A deadlock may involve more than 
two modules (e.g., a cycle of  
transfers among N accounts) 

 You can have deadlock without  
using locks – example later 
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Message Passing Example 

Now let’s look at the message-passing approach to our bank account example. 

 Modules interact by sending messages to each other 

 Incoming requests are placed in a queue to be handled one at a time 

 Sender doesn’t stop working while waiting for an answer to its request; it handles 
more requests from its own queue 

 Reply eventually comes back as another message 

 

 

 Message passing doesn’t eliminate race conditions 

 Suppose the account state machine supports get-balance and withdraw operations 
(with corresponding messages) 

 Can Alice and Bob always stay out of the OVERDRAWN state? 
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 Lesson: need to carefully choose the atomic (indivisible) operations of the state 
machine – withdraw-if-sufficient-funds would be better 

 Message-passing can have deadlocks too 

 Particularly when using finite queues that can fill up 

 

Concurrency is Hard to Test and Debug 

If we haven’t persuaded you that concurrency is tricky, here’s the worst of it.  It’s very hard to 
discover these kinds of concurrency bugs (race conditions and deadlocks) using testing.  And even 
once a test has found a bug, it may be very hard to localize it to the part of the program causing it. 

 Poor coverage 

 Recall our notions of coverage 

• all states, all transitions, or all paths through a state machine 

 Given two concurrent state machines (with N states and M states), the combined 
system has N x M states (and many more transitions and paths) 

 As concurrency increases, the state space explodes, and achieving sufficient 
coverage becomes infeasible 

 Poor reproducibility 

 Transitions are nondeterministic, depending on relative timing of events that are 
strongly influenced by the environment 

• Delays can be caused by other running programs, other network traffic, 
operating system scheduling decisions, variations in processor clock speed, 
etc. 

 Test driver can’t possibly control all these factors 

 So even if state coverage were feasible, the test driver can’t reliably reproduce 
particular paths through the combined state machine  

 heisenbugs  

 a “heisenbug” is nondeterministic, hard to reproduce (as opposed to a “bohrbug”, 
which shows up repeatedly whenever you look at it – almost all bugs in sequential 
programming are bohrbugs) 

 a heisenbug may even disappear when you try to look at it with println or debugger! 

     private static void cashMachine() { 

         for (int i = 0; i < TRANSACTIONS_PER_MACHINE; ++i) { 

             deposit(); // put a dollar in 
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             withdraw(); // take it back out 

                  System.out.println(balance);  // makes the bug 

unreproducible! 

         } 

     } 

 one approach 

 build a lightweight event log (circular buffer) 

 log events during execution of program as it runs at speed 

 when you detect the error, stop program and examine logs 

 

Summary 

 Concurrency 

 Multiple computations running simultaneously 

 Shared-memory & message-passing paradigms 

 Shared memory needs a synchronization mechanism, like locks 

 Message passing synchronizes on communication channels, like streams or queues 

 Processes & threads 

 Process is like a virtual computer; thread is like a virtual processor 

 Race conditions 

 When correctness of result (postconditions and invariants) depends on relative 
timing of events 

 Deadlock 

 When concurrent modules get stuck waiting for each other 
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