
6.005 Software Construction
Fall 2011
Prof. Rob Miller

L10: Concurrency

Today

o Processes & threads
o Time slicing
o Message passing & shared memory
o Race conditions
o Deadlocks

Concurrency

 Concurrency is everywhere, whether we like it or not

 Multiple computers in a network

 Multiple ap

 Multiple processors in a computer (today, often multiple processor cores on a
single chip)

 Concurrency is essential in modern programming

• Web sites must handle multiple simultaneous users

• Mobile apps need to do some of their processing on servers (“in the
cloud”)

• Graphical user interfaces often require background work (e.g. Eclipse
compiling your Java code while you’re editing it)

• Processor clock speeds are no longer increasing – instead we’re getting
more cores on each new generation of chips. So in the future, we’ll have to
split up a computation into concurrent pieces in order to get it to run faster.

Two Models for Concurrent Programming

 Shared Memory

These lecture notes have been collaboratively authored, with contributio1ns from Saman Amarasinghe, Srini Devadas, Michael Ernst, John
Guttag, Daniel Jackson, Rob Miller, Martin Rinard, and Armando Solar-Lezama. Copyright held by the authors.

Network

Image by MIT OpenCourseWare.

plications running on one computer

 Analogy: two processors in a computer, sharing the same physical memory

 Other ways to think about this:

A and B might be two threads in a Java program (we’ll explain what a thread is later)

A and B might be two programs running on a computer, sharing a common
filesystem

 Message Passing

 Analogy: two computers in a network, communicating by network connections

A and B might be a web browser and a web server – A opens a connection to B, asks for a web page,
and B sends the web page data back to A.

A and B might be an IM client and server.

A and B might be two programs running on the same computer whose input and output have been
connected by a pipe (like ls| grep).

Threads & Processes

 Process

 A process is an instance of a running program that is isolated from other processes
on the same machine (particularly for resources like memory)

 Tries to make the program feel like it has the whole machine to itself – like a fresh
computer has been created, with fresh memory

 By default, processes have no shared memory (needs special effort)

 Automatically ready for message passing (standard input & output streams)

 Thread

 A thread is a locus of control inside a running program (i.e. position in the code +
stack, representing the current point in the computation)

 Simulates making a fresh processor inside the computer, running the same
program and sharing the same memory as other threads in process

 Automatically ready for shared memory, because threads share all the memory in the
process (needs special effort to get “thread-local” memory that’s private to the
thread)

 Must set up message passing explicitly (e.g. by creating queues)

2

Time-slicing

 How can I have many concurrent threads with only one or two processors in my
computer?

 When there are more threads than processors, concurrency is simulated by time
slicing (processor switches between threads)

 Time slicing happens unpredictably and nondeterministically

A Shared Memory Example

 Four customers using cash machines simultaneously

 Shared memory model – each cash machine reads and writes the account balance
directly

 // all the cash machines share a single bank account

 private static int balance = 0;

 private static void deposit() {

 balance = balance + 1;

 }

 private static void withdraw() {

 balance = balance - 1;

 }

 // each ATM does a bunch of transactions that

 // modify balance, but leave it unchanged afterward

 private static void cashMachine() {

 for (int i = 0; i < TRANSACTIONS_PER_MACHINE; ++i) {

3

 deposit(); // put a dollar in

 withdraw(); // take it back out

 }

 }

Throughout the day, each cash machine in our network is running cashMachine(), processing
transactions. In this simple example, every transaction is just a one dollar deposit followed by a one-
dollar withdrawal, so it should leave the balance in the account unchanged. So at the end of the day,
regardless of how many cash machines were running, or how many transactions we processed, we
expect the account balance to still be 0.

But it’s not. If more than one cashMachine() call is running at the same time – say, on separate
processors in the same computer – then balance may not be zero at the end of the day. Why not?

Here’s one thing that can happen. Suppose two cash machines, A and B, are both working on a
deposit at the same time. Here’s how the deposit() step typically break down into low-level
processor instructions:

get balance 0

add 1 1

write back the result 1

When A and B are running concurrently, these low-level instructions interleave with each other
(some might even be simultaneous in some sense, but let’s just worry about interleaving for now):

A get balance 0

A add 1 1

A write back the result 1

B get balance 1

B add 1 2

B write back the result 2

This interleaving is fine – we end up with balance 2, so both A and B successfully put in a dollar.
But what if the interleaving looked like this:

A get balance 0

B get balance 0

A add 1 1

B add 1 1

A write back the result 1

B write back the result 1

The balance is now 1 – A’s dollar was lost! A and B both read the balance at the same time,
computed separate final balances, and then raced to store back the new balance – which failed to
take the other’s deposit into account.

This is an example of a race condition

 A race condition means that the correctness of the program (the satisfaction of
postconditions and invariants) depends on the relative timing of events in
concurrent computations

4

• “A is in a race with B”

 Some interleavings of events may be OK (in the sense that they are consistent with
what a single, nonconcurrent process would produce), but other interleavings
produce wrong answers – violating postconditions or invariants

Tweaking the Code Won’t Help

All these versions of the code exhibit the same race condition:

 // version 1

 private static void deposit() {

 balance = balance + 1;

 }

 private static void withdraw() {

 balance = balance - 1;

 }

 // version 2

 private static void deposit() {

 balance += 1;

 }

 private static void withdraw() {

 balance -= 1;

 }

 // version 3

 private static void deposit() {

 ++balance;

 }

 private static void withdraw() {

 --balance;

 }

You can’t tell just from looking at Java code how the processor is going to execute it. You can’t tell
what the indivisible operations – the atomic operations – will be. It isn’t atomic just because it’s one
line of Java. It doesn’t touch balance only once just because the balance identifier occurs only once
in the line. The Java compiler, and in fact the processor itself, makes no commitments about what
low-level operations it will generate from your code. In fact, a typical Java compiler produces exactly
the same code for all three of these versions!

The key lesson is that you can’t tell by looking at an expression whether it will be safe from
race conditions.

Reordering

It’s even worse than that, in fact. The race condition on the bank account balance can be explained
in terms of different interleavings of sequential operations on different processors. But in fact, when
you’re using multiple variables and multiple processors, you can’t even count on changes to those
variables appearing in the same order.

Here’s an example:

 private boolean ready = false;

 private int answer = 0;

 // computeAnswer runs in one thread

5

 private void computeAnswer() {

 answer = 42;

 ready = true;

 }

 // useAnswer runs in a different thread

 private void useAnswer() {

 while (!ready) {

 Thread.yield();

 }

 System.out.println(answer);

 }

We have two methods that are being run in different threads. computeAnswer does a long
calculation, finally coming up with the answer 42, which it puts in the answer variable. Then it sets
the ready variable to true, in order to signal to the method running in the other thread, useAnswer,
that the answer is ready for it to use. Looking at the code, answer is set before ready is set, so once
useAnswer sees ready as true, then it seems reasonable that it can assume that the answer will be 42,
right? Not so.

The problem is that modern compilers and processors do a lot of things to make the code fast. One
of those things is making temporary copies of variables like answer and ready in faster storage (registers
or caches on a processor), and working with them temporarily before eventually storing them back to
their official location in memory. The storeback may occur in a different order than the variables were
manipulated in your code. Here’s what might be going on under the covers (but expressed in Java
syntax to make it clear). The processor is effectively creating two temporary variables, tmpr and
tmpa, to manipulate the fields ready and answer:

 private void computeAnswer() {

 boolean tmpr = ready;

 int tmpa = answer;

 tmpa = 42;

 tmpr = true;

 ready = tmpr;

 // <== what happens if useAnswer() interleaves here?

 // ready is set, but answer isn't

 answer = tmpa;

 }

Synchronization

 The correctness of a concurrent program should not depend on accidents of timing

Race conditions are nasty bugs -- may be rarely observed, hard to reproduce, hard to debug, but may
have very serious effects.

To avoid race conditions, concurrent modules that share memory need to synchronize with each
other.

 Locks are a common synchronization mechanism

 Holding a lock means “I’m changing this; don’t touch it right now”

 Suppose B acquires the lock first; then A must wait to read and write the balance
until B finishes and releases the lock

6

 Ensures that A and B are synchronized, but another cash machine C would be able
to run independently on a different account (with a different lock)

 Acquiring or releasing a lock also tells the compiler and processor that you’re using
shared memory concurrently, so that registers and caches will be flushed out to the
shared storage (which solves the reordering problem)

Deadlock

 Suppose A and B are making simultaneous transfers

 A transfer between accounts needs to lock both accounts, so that money can’t
disappear from the system

 A and B each acquire the lock on the “from” account

 Now each must wait for the other to give up the lock on the “to” account

 Stalemate! A and B are frozen,
and the accounts are locked up.

 “Deadly embrace”

 Deadlock occurs when concurrent
modules are stuck waiting for each
other to do something

 A deadlock may involve more than
two modules (e.g., a cycle of
transfers among N accounts)

 You can have deadlock without
using locks – example later

7

Message Passing Example

Now let’s look at the message-passing approach to our bank account example.

 Modules interact by sending messages to each other

 Incoming requests are placed in a queue to be handled one at a time

 Sender doesn’t stop working while waiting for an answer to its request; it handles
more requests from its own queue

 Reply eventually comes back as another message

 Message passing doesn’t eliminate race conditions

 Suppose the account state machine supports get-balance and withdraw operations
(with corresponding messages)

 Can Alice and Bob always stay out of the OVERDRAWN state?

8

 Lesson: need to carefully choose the atomic (indivisible) operations of the state
machine – withdraw-if-sufficient-funds would be better

 Message-passing can have deadlocks too

 Particularly when using finite queues that can fill up

Concurrency is Hard to Test and Debug

If we haven’t persuaded you that concurrency is tricky, here’s the worst of it. It’s very hard to
discover these kinds of concurrency bugs (race conditions and deadlocks) using testing. And even
once a test has found a bug, it may be very hard to localize it to the part of the program causing it.

 Poor coverage

 Recall our notions of coverage

• all states, all transitions, or all paths through a state machine

 Given two concurrent state machines (with N states and M states), the combined
system has N x M states (and many more transitions and paths)

 As concurrency increases, the state space explodes, and achieving sufficient
coverage becomes infeasible

 Poor reproducibility

 Transitions are nondeterministic, depending on relative timing of events that are
strongly influenced by the environment

• Delays can be caused by other running programs, other network traffic,
operating system scheduling decisions, variations in processor clock speed,
etc.

 Test driver can’t possibly control all these factors

 So even if state coverage were feasible, the test driver can’t reliably reproduce
particular paths through the combined state machine

 heisenbugs

 a “heisenbug” is nondeterministic, hard to reproduce (as opposed to a “bohrbug”,
which shows up repeatedly whenever you look at it – almost all bugs in sequential
programming are bohrbugs)

 a heisenbug may even disappear when you try to look at it with println or debugger!

 private static void cashMachine() {

 for (int i = 0; i < TRANSACTIONS_PER_MACHINE; ++i) {

 deposit(); // put a dollar in

9

 withdraw(); // take it back out

 System.out.println(balance); // makes the bug

unreproducible!

 }

 }

 one approach

 build a lightweight event log (circular buffer)

 log events during execution of program as it runs at speed

 when you detect the error, stop program and examine logs

Summary

 Concurrency

 Multiple computations running simultaneously

 Shared-memory & message-passing paradigms

 Shared memory needs a synchronization mechanism, like locks

 Message passing synchronizes on communication channels, like streams or queues

 Processes & threads

 Process is like a virtual computer; thread is like a virtual processor

 Race conditions

 When correctness of result (postconditions and invariants) depends on relative
timing of events

 Deadlock

 When concurrent modules get stuck waiting for each other

10

MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

